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Abstract

The quantization of Planck constant has been the basic them of TGD for more than one and
half years. The breakthrough became with the realization that standard type Jones inclusions
lead to a detailed understanding of what is involved and predict very simple spectrum for
Planck constants associated with M4 and CP2 degrees of freedom. This picture allows to
understand also gravitational Planck constant and coupling constant evolution and leads also
to the understanding of ADE correspondences (index β ≤ 4 and β = 4) from the point of view
of Jones inclusions.

1. Jones inclusions and quantization of Planck constant

Jones inclusions combined with simple anyonic arguments turned out to be the key to the
unification of existing heuristic ideas about the quantization of Planck constant.

a) The new view allows to understand how and why Planck constant is quantized and gives
an amazingly simple formula for the separate Planck constants assignable to M4 and CP2 and
appearing as scaling constants of their metrics. This in terms of a mild generalizations of
standard Jones inclusions. The emergence of imbedding space means only that the scaling of
these metrics have spectrum: their is no landscape.

b) In ordinary phase Planck constants of M4 and CP2 are same and have their standard
values. Large Planck constant phases correspond to situations in which a transition to a phase
in which quantum groups occurs. These situations correspond to standard Jones inclusions in
which Clifford algebra is replaced with a sub-algebra of its G-invariant elements. G is product
Ga × Gb of subgroups of SL(2, C) and SU(2)L × ×U(1) which also acts as a subgroup of
SU(3). Space-time sheets are n(Gb)-fold coverings of M4 and n(Ga)-fold coverings of CP2

generalizing the picture which has emerged already. An elementary study of these coverings
fixes the values of scaling factors of M4 and CP2 Planck constants to orders of the maximal
cyclic sub-groups. Mass spectrum is invariant under these scalings.

c) This predicts automatically arbitrarily large values of Planck constant and assigns the
preferred values of Planck constant to quantum phases q = exp(iπ/n) using only iterated
square root operation: these correspond to polygons obtainable by compass and ruler con-
struction. In particular, experimentally favored values of h̄ in living matter correspond to these
special values of Planck constant. This model reproduces also the other aspects of the general
vision. The subgroups of SL(2, C) in turn can give rise to re-scaling of SU(3) Planck con-
stant. The most general situation can be described in terms of Jones inclusions for fixed point
subalgebras of number theoretic Clifford algebras defined by Ga ×Gb ⊂ SL(2, C)× SU(2).

d) These inclusions (apart from those for which Ga contains infinite number of elements)
are represented by ADE or extended ADE diagrams depending on the value of index. The
group algebras of these groups give rise to additional degrees of freedom which make possible
to construct the multiplets of the corresponding gauge groups. For β ≤ 4 the gauge groups
An, D2n, E6, E8 are possible so that TGD seems to be able to mimick these gauge theories.
For β = 4 all ADE Kac Moody groups are possible and again mimicry becomes possible: TGD
would be kind of universal physics emulator but it would be anyonic dark matter which would
perform this emulation.

2. The values of gravitational Planck constant

The understanding of large Planck constants led to the detailed interpretation of what is
involved with the emergence of gigantic gravitational Planck constant. The detailed spectrum
for Planck constants gives very strong constraints to the values of h̄gr = GMm/v0 if ones
assumes that favored values of Planck constant correspond to the Jones inclusions for which
quantum phase corresponds to a simple algebraic number expressible in terms of iterated
square roots of rationals. These phases correspond to n-polygons with n equal to a product
of power of two and Fermat primes, which are all different. The ratios of planetary masses
obey the predictions with an accuracy of 10 percent and GMm/v0 for Sun-Earth system is
consistent with v0 = 2−11 if the fraction of visible matter of all matter is about 6 per cent in
solar system to be compared with the accepted cosmological value of 4 per cent.
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3. Identification of gravitational Planck constant as CP2 Planck constant

h̄gr can be interpreted as Planck constant associated with CP2 degrees of freedom and
its huge value implies that also the von Neumann inclusions associated with M4 degrees of
freedom meaning that dark matter cosmology has quantal lattice like structure with lattice
cell given by Ha/G, Ha the a = constant hyperboloid of M4

+ and G subgroup of SL(2,C). The
quantization of cosmic redshifts provides support for this prediction.

4. Large values of Planck constant and coupling constant evolution

Kähler coupling constant is the only coupling parameter in TGD. The original great vision
is that Kähler coupling constant is analogous to critical temperature and thus uniquely de-
termined. Later I concluded that Kähler coupling strength could depend on the p-adic length
scale. The reason was that the prediction for the gravitational coupling strength was otherwise
non-sensible. This motivated the assumption that gravitational coupling is RG invariant in
the p-adic sense.

The expression of the basic parameter v0 = 2−11 appearing in the formula of h̄gr =
GMm/v0 in terms of basic parameters of TGD leads to the unexpected conclusion that αK

in electron length scale can be identified as electro-weak U(1) coupling strength αU(1). This
identification is what group theory suggests but I had given it up since the resulting evolution
for gravitational coupling was G ∝ L2

p and thus completely un-physical. However, if gravita-
tional interactions are mediated by space-time sheets characterized by Mersenne prime, the
situation changes completely since M127 is the largest non-super-astrophysical p-adic length
scale.

The second key observation is that all classical gauge fields and gravitational field are
expressible using only CP2 coordinates and classical color action and U(1) action both reduce
to Kähler action. Furthermore, electroweak group U(2) can be regarded as a subgroup of
color SU(3) in a well-defined sense and color holonomy is abelian. Hence one expects a simple
formula relating various coupling constants. Let us take αK as a p-adic renormalization group
invariant in strong sense that it does not depend on the p-adic length scale at all.

The relationship for the couplings must involve αU(1), αs and αK . The formula 1/αU(1) +
1/αs = 1/αK states that the sum of U(1) and color actions equals to Kähler action and is
consistent with the decrease of the color coupling and the increase of the U(1) coupling with
energy and implies a common asymptotic value 2αK for both. The hypothesis is consistent
with the known facts about color and electroweak evolution and predicts correctly the con-
finement length scale as p-adic length scale assignable to gluons. The hypothesis reduces the
evolution of αs to the calculable evolution of electro-weak couplings: the importance of this
result is difficult to over-estimate.

1 Introduction

The quantization of Planck constant has been the basic them of TGD for more than one and
half years. The breakthrough became with the realization that standard type Jones inclusions
lead to a detailed understanding of what is involved and predict very simple spectrum for Planck
constants associated with M4

± and CP2 degrees of freedom. This picture allows to understand also
gravitational Planck constant and coupling constant evolution and leads also to the understanding
of ADE correspondences (index β ≤ 4 and β = 4) from the point of view of Jones inclusions.

1.1 Jones inclusions and quantization of Planck constant

Jones inclusions combined with simple anyonic arguments turned out to be the key to the unifica-
tion of existing heuristic ideas about the quantization of Planck constant.

1. The new view allows to understand how and why Planck constant is quantized and gives an
amazingly simple formula for the separate Planck constants assignable to M4

± and CP2 and
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appearing as scaling constants of their metrics. This in terms of a mild generalizations of
standard Jones inclusions. The emergence of imbedding space means only that the scaling
of these metrics have spectrum: their is no landscape.

2. In ordinary phase Planck constants of M4
± and CP2 are same and have their standard values.

Large Planck constant phases correspond to situations in which a transition to a phase in
which quantum groups occurs. These situations correspond to standard Jones inclusions in
which Clifford algebra is replaced with a sub-algebra of its G-invariant elements. G is product
Ga × Gb of subgroups of SL(2, C) and SU(2)L × ×U(1) which also acts as a subgroup of
SU(3). Space-time sheets are n(Gb)-fold coverings of M4

± and n(Ga)-fold coverings of CP2

generalizing the picture which has emerged already. An elementary study of these coverings
fixes the values of the scaling factors of M4

± and CP2 Planck constants to orders of the
maximal cyclic sub-groups: h̄(M4

±) = na and h̄(CP2) = nb. The scaling factors of M4
±

metric is naturally n2
b . If one accepts symmetry argument, the scaling factor of CP2 metric

would be n2
a. Later it will be found that more natural option is that there is no scaling of

CP2 metric.

At the level of Schrödinger equation this means that Planck constant h̄ corresponds to the
effective Planck constant h̄eff = (h̄(M4

±)/h̄(CP2))h̄0 = (na/nb)h̄0, which thus can have
all possible positive rational values. For some time I believed on the scaling of metrics of
M4
± resp. CP2 as n2

b resp. n2
a: this would imply invariance of Schrödinger equation under

the scalings but would not be consistent with the explanation of the quantization of radii
of planetary orbits requiring huge Planck constant [D6]. Poincare invariance is however
achieved in the sense that mass spectrum is invariant under the scalings of Planck constants.
That the ratio na/nb defines effective Planck constant conforms with the fact that the value
of Kähler action involves only this ratio (quantum-classical correspondence). Also the value
of gravitational constant is invariant under the scalings of Planck constant since one has
G ∝ g2

KR2, R radius of CP2 for na = 1.

3. This predicts automatically arbitrarily large values of effective Planck constant na/nb and
they correspond to coverings of CP2 points by large number of M4

± points which can have
large distance and have precisely correlated behavior due to the Ga symmetry. One can assign
preferred values of Planck constant to quantum phases q = exp(iπ/n) expressible in terms
of iterated square roots of rationals: these correspond to polygons obtainable by compass
and ruler construction. In particular, experimentally favored values of h̄ in living matter
seem to correspond to these special values of Planck constants. This model reproduces also
the other aspects of the general vision. The subgroups of SL(2, C) in turn can give rise to
re-scaling of SU(3) Planck constant. The most general situation can be described in terms
of Jones inclusions for fixed point subalgebras of number theoretic Clifford algebras defined
by Ga ×Gb ⊂ SL(2, C)× SU(2).

4. These inclusions (apart from those for which Ga contains infinite number of elements) are
represented by ADE or extended ADE diagrams depending on the value of index. The group
algebras of these groups give rise to additional degrees of freedom which make possible to
construct the multiplets of the corresponding gauge groups. For β ≤ 4 the gauge groups
An, D2n, E6, E8 are possible so that TGD seems to be able to mimic these gauge theories.
For β = 4 all ADE Kac Moody groups are possible and again mimicry becomes possible:
TGD would be kind of universal physics emulator but it would be anyonic dark matter which
would perform this emulation.

5. Later it turned out that H → H/Ga × Gb picture does not really allow to understand the
fractionization of spin and em charge. As matter fact, just the opposite of fractionization
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occurs if one requires Ga ⊂ Gb invariance of the physical states since the units of the quantum
numbers become multiples of na resp. nb.

This led to the realization that for a given choice of quantization axes the replacements M4 →
M̂2 = M4\M2 and CP2 → ĈP 2 = CP2\S2, where S2 is the homologically non-trivial geodesic
sphere of CP2, imply that the first homotopy groups of resulting spaces correspond to integers.
A hierarchy of covering spaces of M̂4 and ĈP 2 labelled by the reduced homotopy groups Zna

and Znb
emerges. These covering spaces are naturally extendible to coverings with fiber given

by Ga × Gb. One can denote formally this extension by M̂4×̂Ga resp. ĈP 2×̂Gb. The geometric
interpretation is that M2 resp. S2 is replaced by its orbit under Ga resp. Gb so that Cartesian
product is not in question. This leads naturally to a fractionization of orbital angular momentum
and other ”orbital” quantum numbers.

The most general picture assumes that for a given choice of quantization axes the generalized
imbedding space is the union of M2×S2 common to all factors of the imbedding space and coverings
(M̂×̂Ga)× (ĈP 2×̂Gb), the factor spaces M̂4/Ga× ĈP 2/Gb, plus the hybrids (M̂4×̂Gb)× ĈP 2/Gb

and M̂4/Ga × (ĈP 2×̂Gb) resulting as products of covering and factor spaces.
For factor spaces the unit for quantum numbers like orbital angular momentum is multiplied

by na resp. nb and for coverings it is divided by this number. These two kind of spaces are
in a well defined sense obtained by multiplying and dividing the factors of Ĥ by Ga resp. Gb

and multiplication and division are expected to relate to Jones inclusions with M : N < 4 and
M : N = 4, which both are labelled by a subset of discrete subgroups of SU(2).

1.2 The values of gravitational Planck constant

The understanding of large Planck constants led to the detailed interpretation of what is involved
with the emergence of gigantic gravitational Planck constant. The detailed spectrum for Planck
constants gives very strong constraints to the values of h̄gr = GMm/v0 if one assumes that favored
values of Planck constant correspond to the Jones inclusions for which quantum phase corresponds
to a simple algebraic number expressible in terms of iterated square roots of rationals. These
phases correspond to n-polygons with n equal to a product of power of two and Fermat primes,
which are all different. The ratios of planetary masses obey the predictions with an accuracy
of 3 percent and GMm/v0 for Sun-Earth system is consistent with v0 = 2−11 if the fraction of
visible matter of all matter is about 6 per cent in solar system to be compared with the accepted
cosmological value of 4 per cent.

Gravitational Planck constant h̄gr can be interpreted as effective Planck constant h̄eff =
(na/nb)h̄0 so that the Planck constant associated with M4

± degrees of freedom (rather than CP2

degrees of freedom as in the original wrong picture) must be very large in this kind of situation.
If so, its huge value implies that also the von Neumann inclusions associated with M4

± degrees
of freedom are involved meaning that dark matter cosmology has quantal lattice like structure with
lattice cell given by Ha/G, Ha the a = constant hyperboloid of M4

+ and G subgroup of SL(2,C).
The quantization of cosmic redshifts provides support for this prediction.

There is however strong objection based on the observation that the radius of CP2 would become
gigantic. Surprisingly, this need not have any dramatic implications as will be found. It is also
quite possible that the biomolecules subgroups of rotation group as symmetries could correspond
to na > 1. For instance, the tedrahedral and icosahedral molecular structures appearing in water
would correspond to E6 with na = 3 and E8 with na = 5. Note that na = 5 is minimal value of
na allowing universal topological quantum computation.

7



1.3 Large values of Planck constant and coupling constant evolution

Kähler coupling constant is the only coupling parameter in TGD. The original great vision is that
Kähler coupling constant is analogous to critical temperature and thus uniquely determined. Later
I concluded that Kähler coupling strength could depend on the p-adic length scale. The reason
was that the prediction for the gravitational coupling strength was otherwise non-sensible. This
motivated the assumption that gravitational coupling is RG invariant in the p-adic sense.

The expression of the basic parameter v0 = 2−11 appearing in the formula of h̄gr = GMm/v0

in terms of basic parameters of TGD leads to the unexpected conclusion that αK in electron length
scale can be identified as electro-weak U(1) coupling strength αU(1). This identification is what
group theory suggests but I had given it up since the resulting evolution for gravitational coupling
was G ∝ L2

p and thus completely un-physical. However, if gravitational interactions are mediated
by space-time sheets characterized by Mersenne prime, the situation changes completely since M127

is the largest non-super-astrophysical p-adic length scale.
The second key observation is that all classical gauge fields and gravitational field are expressible

using only CP2 coordinates and classical color action and U(1) action both reduce to Kähler action.
Furthermore, electroweak group U(2) can be regarded as a subgroup of color SU(3) in a well-defined
sense and color holonomy is abelian. Hence one expects a simple formula relating various coupling
constants. Let us take αK as a p-adic renormalization group invariant in strong sense that it does
not depend on the p-adic length scale at all.

The relationship for the couplings must involve αU(1), αs and αK . The formula 1/αU(1)+1/αs =
1/αK states that the sum of U(1) and color actions equals to Kähler action and is consistent with
the decrease of the color coupling and the increase of the U(1) coupling with energy and implies a
common asymptotic value 2αK for both. The hypothesis is consistent with the known facts about
color and electroweak evolution and predicts correctly the confinement length scale as p-adic length
scale assignable to gluons. The hypothesis reduces the evolution of αs to the calculable evolution
of electro-weak couplings: the importance of this result is difficult to over-estimate.

2 Basic ideas

The idea that h̄ is dynamical and can have arbitrarily large values is about one and half year
old as a write this. A lot of progress has occurred during the last year but I have not yet been
able to seriously pose the question whether and how TGD could predict the values of the Planck
constant. In the following a proposal for how TGD predicts the value spectrum of h̄ as one aspect
of quantum criticality is discussed and number theoretical arguments are used to make a guess
about the spectrum of h̄.

2.1 Hints for the existence of large h̄ phases

Quantum classical correspondence suggests the identification of space-time sheets identifiable as
quantum coherence regions. Since they can have arbitrarily large sizes, phases with arbitrarily
large quantum coherence lengths and arbitrarily long de-coherence times seem to be possible in
TGD Universe. In standard physics context this seems highly implausible. If Planck constant
can have arbitrarily large values, the situation changes since Compton lengths and other quantum
scales are proportional to h̄. Dark matter is excellent candidate for large h̄ phases.

The expression for h̄gr in the model explaining the Bohr orbits for planets is of form h̄gr =
GM1M2/v0 [D6]. This suggests that the interaction is associated with some kind of interface
between the systems, perhaps join along boundaries connecting the space-time sheets associated
with systems possessing gravitational masses M1 and M2. Also a large space-time sheet carrying
the mutual classical gravitational field could be in question. This argument generalizes to the
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case h̄/h̄0 = Q1Q2α/v0 in case of generic phase transition to a strongly interacting phase with α
describing gauge coupling strength.

There exist indeed some experimental indications for the existence of phases with a large h̄.

1. I have proposed an explanation of dark matter as a macroscopic quantum phase with a large
value of h̄ [D6]. Any interaction, if sufficiently strong, can lead to this kind of phase.

2. Living matter could represent a basic example of large h̄ phase. Even ordinary condensed
matter could be ”partially dark” in many-sheeted space-time and this could resolve the age
old mystery of why water is transparent [J6].

3. There is claim about a detection in RHIC (Relativistic Heavy Ion Collider in Brookhaven)
of states behaving in some respects like mini black holes [73]. These states could have
explanation as color flux tubes at Hagedorn temperature forming a highly tangled state and
identifiable as stringy black holes of strong gravitation. The strings would carry a quantum
coherent color glass condensate, and would be characterized by a large value of h̄ naturally
resulting in confinement phase with a large value of αs [D5]. The progress in hadronic mass
calculations led to a concrete model of color glass condensate of single hadron as many-
particle state of super-canonical gluons [F4, F5]- something completely new from the point
of QCD - responsible for non-perturbative aspects of hadron physics. In RHIC events these
color glass condensate would fuse to single large condensate. This condensate would be
present also in ordinary black-holes and the blackness of black-hole would be darkness.

4. I have also discussed a model for cold fusion based on the assumption that nucleons can
be in large h̄ phase. In this case the relevant strong interaction strength is Q1Q2αem for
two nucleon clusters inside nucleus which can increase h̄ so large that the Compton length
of protons becomes of order atomic size and nuclear protons form a macroscopic quantum
phase [J6].

2.2 Quantum coherent dark matter and h̄

The argument based on gigantic value of h̄gr explaining darkness of dark mater is attractive but
one should be very cautious.

Consider first ordinary QED: e =
√

α/4πh̄ appears in vertices so that perturbation expansion
in powers of

√
h̄ basically. This would suggest that large h̄ leads to large effects. All predictions

are however in powers of alpha and large h̄ means small higher order corrections. What happens
can be understood on basis of dimensional analysis. For instance, cross sections are proportional
to (h̄/m)2, where m is the relevant mass and the remaining factor depends on α = e2/(4πh̄) only.
In the more general case tree amplitudes with n vertices are proportional to en and thus to h̄n/2

and loop corrections give only powers of α which get smaller when h̄ increases. This must relate
to the powers of 1/h̄ from the integration measure associated with the momentum loop integrals
affected by the change of α.

Consider now the effects of the scaling of h̄. The scaling of Compton lengths and other quantum
kinematical parameters is the most obvious effect. An obvious effect is due to the change of h̄ in
the commutation relations and in the change of unit of various quantum numbers. In particular,
the right hand side of oscillator operator commutation and anti-commutation relations is scaled.
A further effect is due to the scaling of the eigenvalues of the modified Dirac operator h̄ΓαDα.

The exponent exp(K) of Kähler function K defining perturbation series in the configuration
space degrees of freedom is proportional to 1/g2

K and does not depend on h̄ at all if there is only
single Planck constant. The propagator is proportional to g2

K . This can be achieved also in QED
by absorbing e from vertices to e2 in photon propagator. Hence it would seem that the dependence
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on αK (and h̄) must come from vertices which indeed involve Jones inclusions of the II1 factors
of the incoming and outgoing lines.

This however suggests that the dependence of the scattering amplitudes on h̄ is purely kine-
matical so that all higher radiative corrections would be absent. This seems to leave only one
option: the scale factors of covariant M4

± and CP2 metrics are dynamical. The first guess is that
the ratio of scaling factors for the M4

± and CP2 metrics corresponds to the scaling of effective
Planck constant. If one has h̄(M4

±) = nbh̄0 resp. h̄(CP2) = nah̄0 and n2
a resp. n2

b scales M4
±

resp. CP2 metric then the value of Kähler action depends on the ratio na/nb and h̄eff = na/nbh̄0

would naturally appear in Schrödinger equation. Since Gb fold covering of M4
± allows fraction-

ization of the angular momentum projection m to m/nb, this implies a fractionization of angular
momenta given by Lz = h̄(M4

±)×m/nb = (na/nb)mh̄0 and anyonic systems could thus correspond
to nb > na. Similar fractionization of color charges and em charge are also possible.

The ratio λ(M4)/λ(CP2) of the scaling factors of metrics could be interpreted as coding for
radiative corrections to Kähler function and thus space-time physics since Kähler would depend
directly on h̄eff/h̄0. Even in the case that the radiative corrections to the configuration space
functional integral vanish, as suggested by quantum criticality, they would be actually taken into
account. The overall scaling of H metric would not however matter as far as the classical dynamics
of single space-time sheet is considered. The space-time sheets with different values of scaling
constants are however expected to have common points and thus interact and in this manner also
the over all scaling becomes relevant.

This kind of dynamics is not consistent with the original view about imbedding space as some-
thing completely un-dynamical. The resolution of the problem came from the realization that the
fundamental structure is the inclusion hierarchy of number theoretical Clifford algebras from which
entire TGD emerges including dynamical scales for the imbedding space metric.

2.3 The phase transition changing the value of Planck constant as a
transition to non-perturbatice phase

2.3.1 A phase transition increasing h̄ as a Bose-Einstein condensation type process

The general vision is that a phase transition increasing h̄ occurs when perturbation theory ceases
to converge. Very roughly, this would occur when the parameter x = Q1Q2α becomes larger than
one. The net quantum numbers for ”spontaneously magnetized” regions provide new natural units
for quantum numbers. The simplest situation is that conformally confined block of N particles
with identical quantum numbers is formed Compton length scaled up so that h̄ is scaled up by
factor N . The assumption that standard quantization rules prevail poses very strong restrictions
on allowed physical states and selects a subspace of the original configuration space. One can of
course, consider the possibility of giving up these rules at least partially in which case a spectrum
of fractionally charged anyon like states would result.

The necessity of large h̄ phases (or rather large h̄eff ) phases) has been actually highly suggestive
since the first days of quantum mechanics. The classical looking behavior of macroscopic quantum
systems remains still a poorly understood problem and large h̄ phases provide a natural solution
of the problem.

In TGD framework quantum coherence regions correspond to space-time sheets. Since their
sizes are arbitrarily large the conclusion is that macroscopic and macro-temporal quantum coher-
ence are possible in all scales. Standard quantum theory definitely fails to predict this and the
conclusion is that large h̄ phases for which quantum length and time scales are proportional to h̄
and long are needed.

Somewhat paradoxically, large h̄ phases explain the effective classical behavior in long length
and time scales. Quantum perturbation theory is an expansion in terms of gauge coupling strengths
inversely proportional to h̄ and thus at the limit of large h̄ classical approximation becomes exact.
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Also the Coulombic contribution to the binding energies of atoms vanishes at this limit. The fact
that we experience world as a classical only tells that large h̄ phase is essential for our sensory
perception. Of course, this is not the whole story and the full explanation requires a detailed
anatomy of quantum jump.

2.3.2 The criterion for the occurrence of the phase transition increasing the value of
h̄

In the case of planetary orbits the large value of h̄gr = 2GM/v0 makes possible to apply Bohr
quantization to planetary orbits. This leads to a more general idea that the phase transition
increasing h̄ occurs when the system consisting of interacting units with charges Qi becomes non-
perturbative in the sense that the perturbation series in the coupling strength αQiQj , where α is
the appropriate coupling strength and QiQj represents the maximum value for products of gauge
charges, ceases to converge. Thus Mother Nature would resolve the problems of theoretician.

A primitive formulation for this criterion is the condition αQiQj ≥ 1 and predicts the existence
of dark matter hierarchies with h̄ = λkh̄0, k = 0, 1, ..., λ = n/v0 or λ = 1/nv0, v0 ' 2−11. This rule
of thumb has now been applied with success the interpretation of hadronic mass calculations and
to build models for systems like atomic nucleus and high Tc superconductor and seems to work.
Of course, the criterion for transition is primitively formulated and the understanding what really
happens in the transition to large h̄ phase behaving like dark matter.

2.4 Planck constant as a scaling factor of metric and possible values of
Planck constant

2.4.1 Scaling of Planck constant and scalings of M4
± and CP2 metrics

The key property of Schrödinger equation is that kinetic energy term depends on h̄ whereas the
potential energy term has no dependence on it. This makes the scaling of h̄ a non-trivial trans-
formation. In the case of Dirac equation same conclusion applies and corresponds to the minimal
substitution p− eA → ih̄∇− eA. Consider next the situation in TGD framework.

1. Minimal substitution does not make sense in CP2 degrees of freedom

The first crucial observation is that the minimal substitution p − eA → ih̄∇ − eA does not
make sense in the case of CP2 Dirac operator since, by the non-triviality of spinor connection, one
cannot choose the value of h̄ freely. In fact, spinor connection of CP2 is defined in such a manner
that spinor connection corresponds to the quantity h̄eQA, where denotes A gauge potential, and
there is no natural manner to separate h̄e from it. This however means that overall scaling of
covariant M4

± metric by factor n2
b is equivalent to the scaling of h̄2 by 1/n2

b . In the case of Dirac
operator in M4 × CP2 one can assign separate Planck constants to Poincare and color algebras
and the scalings of M4

± and CP2 metrics induce scalings of corresponding values of h̄2. As far as
Kähler action is considered, CP2 metric could be always thought of being scaled to its standard
form.

Assume that the Dirac operator in M4 × CP2 has the following structure.

1. Covariant M4
± resp. metric is proportional to h̄(CP2)2 resp. h̄(M4)2.

2. M4
± part is proportional to h̄(M4

±) and CP2 part to h̄(CP2).

This implies that M4
± resp. CP2 part of Dirac operator is proportional to h̄(M4

±)/h̄(CP2)
resp. h̄(CP2)/h̄(M4

±). One can obviously introduce the notion of effective Planck constant
h̄eff/h̄0 = h̄(M4

±)/h̄(CP2).
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Dirac equation gives the eigenvalues of wave vector squared k2 = kiki rather than four-
momentum squared p2 = pipi in M4

± degrees of freedom and its analog in CP2 degrees of freedom.
The values of k2 are proportional to 1/λ2 so that p2 does not depend on it for pi = h̄ki: analogous
conclusion applies in CP2 degrees of freedom. This gives rise to the invariance of mass squared
and the desired scaling of wave vector when h̄ changes.

This consideration generalizes to the case of the induced gamma matrices and induced metric
in X4, modified Dirac operator, and Kähler action which carry dynamical information about the
ratio h̄eff/h̄0.

3. Objection

The fact is that the symmetry for the scalings of the metrics of M4
± resp. CP2 metrics by

n2
b resp. n2

a is an ad hoc assumption dictated by unconscious appeal to symmetry. Symmetry is
certainly natural for the dual description of space-time surfaces as surfaces in hyper-octonionic
space HO = M8 but need not make sense for the description in terms of H. Furthermore, the
projective character of CP2 suggests that one can think that C3 metric is indeed scaled but that
scaling disappears in the projective identification of points belonging to the complex rays of C3 as
same point of CP2.

The n2
a scaling of CP2 metric is also mathematically questionable since the isometric identifi-

cation of CP2 factors for sectors of H with same Gb means that the identified points r1 and r2

have same distance from the origin of CP2: na1d(r1) = na2d(r2)(r is the U(2) invariant radial
coordinate). This implies that the CP2 with na1 < na2 is contained as genuine subset on CP2

with na2 and that inclusion means kind of blow up of included CP2 to an open set. It is not clear
whether the inclusion extends to a well-define global inclusion.

What is fortunate that the option with universal CP2 metric does not affect the predictions
of existing applications of Planck constant hierarchy at the level of Schrödinger equation. In
Kähler action however only na makes itself visible so that na = nb situation is not equivalent with
na = nb = 1 situation in this case.

3. Quantum classical correspondence and the values of h̄(M4
±)

Quantum classical correspondence suggests that the values of na should be represented also at
space-time level. The variational principle making space-time sheets counterparts of Bohr orbits
indeed implies the quantization of Kähler magnetic flux and the quantum need not be the standard
flux quantum. The generalized quantization condition would be

∫
BdS = nah̄0 and in principle

it is possible to deduce the values of na from the classical theory. The flux integral does not
involve the induced metric so that there is no explicit dependence on nb. The flux integral involves
however sum over ”sheets” of the covering of M4

± so that the value of flux is n(Gb)-fold so that the
quantization condition requires scaling of

∫
BdS for single sheet by na/nb factor corresponding to

the value of the effective Planck constant appearing in Schrödinger equation.

2.4.2 The behavior of angular momentum under the scalings of Planck constants

The assumption that mass squared is invariant in the scalings of Planck constants and resulting
scaling of M4

± metric follows from the invariance of the mass scale in p-adic mass calculations.
This is clear from the fact that massless wave equation (p2 − ∇2(CP2))Ψ = 0 defines the CP2

contribution to the mass squared and does not contain na and nb explicitly.

1. The invariance of angular momentum under scalings of Planck constants would not be con-
sistent with fractionization of angular momenta in anyonic physics. The scaling in radial
degrees of freedom suggest a scaling in angular degrees of freedom which would mean that
the scaling of CP2 Planck constant by nb inducing nb-fold scaling of M4

± distances also cor-
responds to an nb-fold multiple covering of M4

± by CP2 points. Assuming this, one finds
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angular momentum scales as Lz = mh̄0 → (na/nb)mh̄0 since m is fractionized to m/nb by
the presence of Gb covering of M4

±. Only for na = nb invariance is obtained. Similar argu-
ment applies in color and electro-weak degrees of freedom. The scaling of quantum numbers
is q → nbq if CP2 metric is not scaled.

2. The scaling of the M4
± (CP2) metric implies that the M4

± size of a given space-time sheet
increases by a factor nb. This is visible as a concrete increase from the point of view of space-
time sheets with ordinary values of Planck constant. Note that Compton lengths h̄(M4

±)/m
scale as na and this is what makes possible transition to a macroscopic quantum phase.

3. Biologically especially interesting Ga coverings correspond to na = λk-fold coverings with
λ = 211 associated with magnetic flux quanta [M3]. For this sequence h̄eff increases so
that macroscopic quantum phase could result. In this case the unit of angular momentum
can become rather large. Note also also that cyclotron energy scales up and exceed thermal
energy.

4. One could also understand the approach to quantum chaos as a period doubling type process.
The powers λ = 2k are allowed as values of nb = λk if one assumes that nb integers corre-
sponding to Fermat polygons. λ = 2 is the simplest possibility. Note that heff decreases
in this process. Period 2k-folding would correspond to the emergence of classical chaos at
space-time level by a step-wise process in which the step h̄(CP2) → 2kh̄(CP2). As h̄(CP2)
increases by a factor λ, the space-time sheet representing an orbit of particle closing after one
turn transforms to an orbit closing only after λ turns. Note that the volume of space-time
sheet remains finite only if the orbit closes after finite number of turns. The step k → k + 1
would correspond to a local fractal operation making each sheet of the λk sheeted surface
λ-sheeted so that λk+1 sheeted surface would result. Instead of period doubling one would
have period λ-folding with the value of λ depending on p-adic prime p ' 2k.

2.4.3 Why M4
± and CP2 Planck constants should be integer multiples of h̄0?

Suppose that the structure in question correspond to an N(Gb)-fold covering of M4
± by a symmetry

group Gb ⊂ SU(2) ⊂ SU(3) acting on CP2 coordinates so that there are N(Gb) points per each
point of M4

±. The basic observation is that nb × 2π rotation, where nb is the order of maximal
cyclic group of G, is needed to bring the particle to the original CP2 position since the N(Gb)-fold
covering is analogous to a Riemann surface. This means that angular momentum eigen states
exp(imφ) are replaced with exp(imφ/nb).

This is consistent with the quantization of angular momentum and its conservation in the
phase transition to non-perturbative phase since the scaling na → na/nb of the unit of angular
momentum occurs. For a cyclic group one would have nb = N(Gb) but for the dihedral group
Dn involving also reflections one would have N = N(Gb)/2. One has nb = 3 for tedrahedral and
nb = 5 for icosahedral group.

One can however consider also the mirror symmetric situation and in this case one would
have covering of CP2 point by M4

± points with a symmetry which could be some subgroup Ga ⊂
SL(2, C). This would lead to a scaling of Planck constant appearing in the Lie algebra of color
group and this scaling need not be same as for the Lie algebra of Poincare group. Color wave
functions exp(imφ) are replaced with exp(imφ/na) in case of na fold covering and the units of
color and electro-weak charges are multiplied by nb.

The formation of these stable multiple coverings could be seen as an analog for a transition
in chaos via a process in which a closed Bohr orbit regarded as a particle itself becomes an orbit
closing only after m turns. TGD predicts a hierarchy of higher level zero energy states representing
S-matrix of lower level as entanglement coefficients. Particles identified as ”tracks” of particles
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at orbits closing after m turns might serve as space-time correlates for this kind of states. There
is a direct connection with the fractional quantum numbers, anyon physics and quantum groups.
Of course the stability of these coverings is far from obvious. Whether or not the coverings are
exact or approximate, it however seems that the basic mathematics of infinite-dimensional Clifford
algebras provides an elegant description for them.

2.4.4 The quantization of Planck constants from Jones inclusions

From the beginning the strong gut feeling has been that the allowed values of h̄ are expressible
in terms of Beraha numbers Bn = 4cos2(π/n), n ≥ 3 related to Jones inclusion hierarchies of
hyperfinite factors of type II1, which correspond to von Neumann algebra naturally associated with
configuration space spinors. The proposed formulas were however incredibly clumsy as compared
to the final formulas h̄(M4

±)/h̄0 = na and h̄(CP2)/h̄0 = nb.
Consider the inclusion N ⊂ M of these factors as von Neumann algebras. A deep result is that

one can express M as N : M -dimensional module over N with fractal dimension N : M = Bn.
√

Bn

represents the dimension of a space of spinor space renormalized from the value 2 corresponding
to n = ∞ down to

√
Bn = 2cos(π/n) varying thus in the range [1, 2]. Bn in turn would represent

the dimension of the corresponding Clifford algebra.
The study of a concrete model for Jones inclusions in terms of finite subgroups G of SU(2)

defining sub-algebras of infinite-dimensional Clifford algebra as fixed point sub-algebras leads to
the correct track concerning the understanding of quantization of Planck constants.

The ADE diagrams of An and D2n characterize cyclic and dihedral groups whereas those of E6

and E8 characterize tedrahedral and icosahedral groups. This approach leads to the hypothesis
that the scaling factor of Planck constant assignable to Poincare (color) algebra corresponds to
the order of the maximal cyclic subgroup of Gb ⊂ SU(2) (Ga ⊂ SL(2, C)) acting as symmetry
of space-time sheet in CP2 (M4

±) degrees of freedom. It predicts arbitrarily large M4
± and CP2

Planck constants in the case of An and D2n.
The model provides a concrete view about the transition to non-perturbative phase, justifies

the identification of space-time sheets as nb-fold coverings of M4
± and na-fold coverings of CP2

, and predicts that cyclic and dihedral groups which correspond to polygons constructible using
only ruler and compass should correspond to systems especially abundant in Nature. An analog of
p-adic length scale hypothesis emerges raising powers of 2 and Fermat primes in special position.
The value h̄(M4)/h̄0 = na = 211 and its 211k multiples for which the physics of living matter
provides evidence correspond to these special values of na. Occam’s razor leaves only this option
under serious consideration.

2.4.5 Kähler function codes for a perturbative expansion in powers of h̄(M4
±)/h̄(CP2)

Suppose that one accepts that the spectrum of M4
± resp. CP2 Planck constants is accompanied by

a hierarchy of overall scalings of covariant M4
± by n2

b/n2
a consistent with scalings of M4 resp. CP2

metrics by n2
b resp. n2

a followed by overall scaling by 1/n2
a so that CP2 metric suffers no scaling

and difficulties with isometric gluing procedure are avoided.
The first implication of this picture is that the modified Dirac operator determined by the

induced metric and spinor structure depends on na/nb in a highly nonlinear manner but there
is no dependence on the overall scaling of the H metric. This in turn implies that the fermionic
oscillator algebra used to define configuration space spinor structure and metric depends on the
value of na/nb. Same is true also for Kähler action and configuration space Kähler function.
Hence Kähler function is analogous to an effective action expressible as infinite series in powers of
h̄eff/h̄0 = h̄(M4)/h̄(CP2).

This interpretation allows to overcome the paradox caused by the hypothesis that loop correc-
tions to the functional integral over configuration space defined by the exponent of Kähler function
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serving as vacuum functional vanish so that tree approximation is exact. This would imply that all
higher order corrections usually interpreted in terms of perturbative series in powers of 1/h̄ vanish.
The paradox would result from the fact that scattering amplitudes would not receive higher order
corrections and classical approximation would be exact. This certainly cannot be the case always:
consider only the photon-photon scattering. This paradox can be also regarded as an objection
against the proposal that generalized Feynman diagrams are equivalent with tree diagrams or more
generally, that each diagram is equivalent with a minimal loopy diagram allowing homologically
non-trivial imbedding with non-intersecting lines to a higher genus Riemann surface.

The dependence of both states created by Super Kac-Moody algebra and the Kähler func-
tion and corresponding propagator identifiable as contravariant configuration space metric would
mean that the expressions for scattering amplitudes indeed allow an expression in powers of
h̄(M4

±)/h̄(CP2). What is so remarkable is that the TGD approach would be non-perturbative
from the beginning and ”semiclassical” approximation, which might be actually exact, automati-
cally would give a full expansion in powers of h̄(M4

±)/h̄(CP2). This is in a sharp contrast to the
usual quantization approach.

2.5 Further ideas related to the quantization of Planck constant

In the following further ideas related to the quantization of Planck constant are discussed. These
ideas were originally in central role in attempts to understand the quantization.

2.5.1 The identification of the value of the parameter v0 in terms of Kähler coupling
strength

The quantization of the gravitational Planck constants h̄gr = GMm/v0 involves the parameter
v0 ∼ 2−11, which has has actually dimension of velocity unless on puts c = 1, and its harmonics
and sub-harmonics appear in the scaling of h̄gr. v0 corresponds to the velocity of distant stars in
the model of galactic dark matter. The natural original belief was that this parameter would be
fundamental for the understanding of the quantization of h̄. The condition h̄gr(M4)/h̄0 = na/nb

must be however regarded as distinct from the quantization of v0. Combined with the variation of
v0 implies conditions on the product Mm of the masses. These conditions are however rather mild
without additional constraints on N(M4). Despite the fact that v0 is not fundamental parameter
in quantization of h̄ it deserves to repeat basic argument allowing to identify v0.

TGD allows to identify this parameter as

v0 = 2
√

TG =

√
2π

g2
K

√
G

R2
,

T =
1

8αK

h̄0

R2
. (1)

Here T is the string tension of cosmic strings, R denotes the ”radius” of CP2 (2R is the radius
of geodesic sphere of CP2). g2

K is Kähler coupling strength assumed to be renormalization group
invariant and analogous to critical temperature. Note that this expression could be also regarded
as a formula for gravitational constant in terms of fundamental parameters of TGD including v0

for which TGD predicts the value v0 = 2−11. I have proposed the following formla for αK for the
value h̄0 of Planck constant

αK = k
1

log(p) + log(K)
,
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K =
R2

h̄0G
= 2× 3× 5× 7× 11× 13× 17× 19× 23 = 223, 092, 870 ,

k ' π/4 . (2)

Equivalence Principle requires that h̄ in the formula for K corresponds to the value h̄0 ≡ 1 [D6] so
that gravitational coupling constant is invariant also with respect to coupling constant evolution
associated with Planck constants. One can define ”dynamical” Planck length as

Ld =
√

Gh̄gr =
√

M2/M1
1
v0

GM1 .

The order of magnitude is not too far from Schwartschild radius.
Number theoretic constraints are expected to pose strong constraints on the value of k. The

most realistic scenario corresponds to renormalization group invariance of g2
K . Since this predicts

that gravitational constant scales as L2
p as a function of p-adic length scale, one must assume that

gravitons correspond to Mersenne prime M127, the largest Mersenne which does not correspond
super-astrophysical length scale. This hypothesis relates the evolution of color coupling strength
to that for electro-weak coupling strength. v0 = 2−11 is predicted to be a fundamental constant.
The mean experimental value of 1/v0 is 1/v0 = 2174 with an accuracy of 1 per cent.

RG invariance of G would imply a discrete version of a typical logarithmic evolution of U(1)
coupling constant strength as a function of length scale is in question and for k = 127 (M127) the
value of αK is very near to fine structure constant α ' 1/137. This evolution would be however
unrealistic at short distances.

Nottale has argued that also sub-harmonics and harmonics of v0 must be accepted. In TGD
framework this harmonics correspond to different value of gravitational Planck constant and from
the general expression h̄gr = 2GM1M2v0 = na/nb it is clear that one could multiply and divide
h̄gr by integers, in particular multiplication (division) by Fermat primes is possible if they do not
appear (appear) in na (nb).

The challenge is to understand why v0 appears in the basic formula expressing the change of
h̄ in the transition increasing the value of h̄. It would seem that h̄ characterizes the magnetic flux
tubes (join along boundaries bonds) connecting the interacting systems and serving as space-time
correlates for the interaction giving rise to bound state.

The value of v0 deduced for cosmic strings does not make sense in astrophysical or condensed
matter context, where cosmic strings are replaced with magnetic flux tubes. v0 remains invariant in
this scaling down if R2 is replaced by the p-adic length scale L2

p apart from a multiplicative factor
in the formulas for G and T so that the product TG remains invariant. Tm ∝ 1/L2

p characterizes
the magnetic energy density of the magnetic flux tube and Gm → L2

p is identifiable as a ”strong”
gravitational coupling strength characterizing the interactions of magnetic flux tubes behaving like
string like objects.

2.5.2 Quantum criticality and the spectrum of h̄

The original idea was that number theoretical vision combined quantum criticality could allow
to determine the allowed values of Planck constant, or in the new formulation the values of
λ(M4)/λ(CP2). It has however become clear that λ(M4)/λ(CP2) is determined by different ar-
guments and quantum criticality could fix the dependence of the Kähler coupling strength on
λ(M4)/λ(CP2) rather than determining the values of g2

K .
Number theoretical vision has led to the proposal that the exponent of Kähler function is

expressible as a Dirac determinant for the modified Dirac operator. The condition of quantum
criticality would fix that the value of g2

K , defined as the analog of critical temperature, as a function
of h̄(M4

±)/h̄(CP2).
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There is an entire hierarchy of algebraic extensions of rationals for which one calculate the Dirac
determinant and thus Kähler function. The restriction to an algebraic extension of rationals does
not require the restriction of the modified Dirac operator to the set of rationals or their algebraic
extensions. The only thing that is required is that the subset of allowed eigenvalues of the modified
Dirac operator belongs to the extension considered. It is quite possible that the value of Dirac
determinant is finite since the number theoretic restriction might be satisfied only by a finite
number of eigenvalues. Hence nature would also take care of regularization of Dirac determinants
by using the number theoretic hierarchy. In this manner one can in principle calculate a Dirac
determinant for each extension as a function of λ(M4)/λ(CP2) and gK and fix latter from the
quantum criticality.

The fact that quantum phase q = exp(iπ/n) is algebraic number and exists p-adically only
in some minimal algebraic extension of given p-adic number field, suggests that the values of
q(M4) and q(CP2) might characterize algebraic extensions of p-adic numbers by complex phases
so that also λ(M4) and λ(CP2) would depend on the algebraic extension. If so, g2

K can depend
on the algebraic extension of rationals involved via λ(M4)/λ(CP2). Recall that the original idea
was that the requirement that g2

K does not depend on algebraic extension, could fix the value of
λ(M4)/λ(CP2) for the extension. This might be possible but there is no deep reason to require
this.

2.5.3 Renormalization group flow associated with phase resolution and Jones inclu-
sions

The basic philosophical idea behind renormalization group approach is thinning of degrees of free-
dom when the scale of resolution is reduced. One can also consider renormalization group evolution
associated with angle/phase resolution and quantum group phases associated with Beraha num-
bers defining Jones indices M : N are excellent candidates for defining angular resolution in some
sense [E9, C7, E10].

In p-adic TGD these angular resolutions would have very concrete interpretation since only
algebraic extensions obtained by introducing phases exp(iπ/n) make it possible to speak about
phases in p-adic sense (in cognitive sense). For a finite-dimensional extension of p-adic numbers
the number of existing angles is thus always finite. Each Jones inclusion would define algebraic
extension of p-adic giving rise to definite angular resolution defined by ∆φ = π/n and at the limit
n →∞ the resolution would become ideal.

1. The change n → n − 1 of Jones inclusion could be seen as thinning of degrees of freedom
associated with angular resolution leading from resolution ∆φ = π/n to ∆φ = π/(n−1). For
instance, for n = 3 one would obtain a minimal angular resolution with quantum phase equal
to exp(iπ/3). Only three angles values would be discernible p-adically. These phases would
correspond naturally to the phases assignable to the center of SU(3) whose Dynkin diagram
indeed corresponds to n = 3 inclusion. Color SU(3) would be the most rigid or minimal
symmetry and would not reduce to SU(2). Color degrees of freedom would correspond to
the color rotational rigid body degrees of freedom of a topologically condensed space-time
sheet.

2. Contrary to the original guess it seems that the minimum angular resolution cannot corre-
spond to vacuum extremals: this is also consistent with the assumption that non-perturbative
phase is in question. Since SU(2) generates homologically non-trivial geodesic spheres of CP2,
G invariance and the requirement that space-time sheet defines a smooth N(G)-fold cover of
M4
± probably imply non-vacuum extremal property so that CP2 projection would have CP2

dimension D(CP2) ≥ 2.
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3. Since angular resolution becomes poorer in n → n− 1 transition and the dimension M : N
of M as N -module is reduced in the transition, it seems natural to assign angular resolution
to the dynamics to these M : N degrees of freedom.

4. The natural physical interpretation for the angular resolution would be in terms of multi-
ple cover of M4

± by a subgroup G ⊂ SU/2). One could perhaps say that 2π/n rotation
in CP2 would correspond to 2π rotation in M4

± and would be thus have a very concrete
representation.

3 Jones inclusions and dynamical Planck constant

3.1 Basic ideas

The anyonic arguments for the quantization of Planck constant suggest that one can assign separate
scalings of Planck constant to M4

± CP2 degrees of freedom and that these scalings in turn reflect as
scalings of M4

± and CP2 metrics. This is definitely not in accordance with the original TGD vision
based on uniqueness of imbedding space but makes sense if space-time and imbedding space are
emergent concepts as the hierarchy of number theoretical von Neumann algebra inclusions indeed
suggests. Indeed, the scaling factors of M4

± and CP2 metric remain non-fixed by the general
uniqueness arguments since Cartesian product is in question.

3.1.1 Jones inclusions defined by subgroups of SL(2, C)× SU(2)

Jones inclusions with M : N < 4 have representation as RG
0 ⊂ RG with G a discrete subgroup of

SU(2). The localization of Clifford algebra means that octonionic Clifford algebra elements appear
as coefficients of powers series in HO coordinate represented as a complexified quaternionic matrix
having with determinant equal to the Minkowskian norm squared in HO. SU(2) can be interpreted
as acting in E4 as rotations in HO = M4 × E4 decomposition. On quantum spinors the action
corresponds to double cover of G.

A more general choice for G would be as a discrete subgroup Ga ×Gb ⊂ SL(2, C)× SU(2)×
SU(2). Poincare invariance suggests that the subgroup of SL(2, C) reduces either to a discrete
subgroup of SU(2) and in the case that the rotation are genuinely 3-dimensional (E6, E8), the
only possible interpretation would be as isotropy group of a particle at rest. When the group acts
on plane as in case of An and D2n, it could be also assigned to a massless particle.

If the group involves boosts it contains an infinite number of elements and it is not clear whether
this kind of situation is physically sensible. In this case Jones inclusion could be interpreted as an
inclusion for the tensor product of G invariant algebras associated with M4

± and CP2 degrees of
freedom and one would have M : N = M : N (Ga)×M : N (Gb). Since the index increases as the
order of G increases one has reasons to expect that in the case of Ga = SL(2, C) Na = ∞ implies
larger M : N (Ga) > 4.

A possible interpretation is that the values M : N < 4 are analogous to bound state energies
so that a discrete rotation group acting in the relative rotational degrees of freedom can act as a
symmetry group whereas the values M : N > 4 are analogous to ionized states for which particles
are almost freely moving with respect to each other with a constant velocity.

When one restricts the coefficients to G-invariant elements of Clifford algebra the Clifford field
is G-invariant under the natural action of G. This allows two interpretations. Either the Clifford
field is G invariant or that the Clifford field is defined in orbifold M4

±/Ga × E4/Gb. M4
±/Ga is

obtained by replacing hyperboloid Ha (t2 − x2 − y2 − z2 = a2) with Ha/Ga. These spaces have
been considered as cosmological models having 3-space with finite volume [D5] (also a lattice like
structure could be in question).
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3.1.2 The quantum phases associated with sub-groups of SU(2)

It is natural to identify quantum phase as that defined by the maximal cyclic subgroup for finite
subgroups of SU(2) and infinite subgroups of SL(2, C). Before continuing a brief summary about
quantum phases associated with finite subgroups of SU(2) is in order. E6 corresponds to N = 24
and n = 3 and E8 to icosahedron with N = 120, n = 5 and Golden mean and the minimal value
of n making possible universal topological quantum computer [E9].

Dn and An have orders 2n and n + 1 and act as symmetry groups of n-polygon and have
n-element cyclic group as a maximal cyclic subgroup. For double covers the orders are twice this.
Thus An resp. D2n correspond to q = exp(iπ/n) resp. q = exp(iπ/2n). Note that the restriction
n ≥ 3 means geometrically that only non-trivial polygons are allowed.

3.1.3 Representation of Jones inclusions as singular bundle structures at the level of
imbedding space

Since the imbedding space seems to emerge from the number theoretical von Neumann inclusions in
TGD, the natural question is whether Jones inclusions could have as space-time correlates singular
bundle structures defined by groups Ga and Gb associated with M4 and CP2 degrees of freedom.

1. The different local Clifford algebras and corresponding imbedding spaces must be ”glued
together”. HO = M8 defines a singular bundle structure with HO/Ga×Gb playing the role
of base space and Ga × Gb that of a generic fiber. The inclusion of orbifold HO/Ga × Gb

to HO by gauge fixing assigns to Ga ×Gb coset a single arbitrarily chosen point of Ga ×Gb

and thus of HO. The glued imbedding spaces are equivalent as pseudo Riemann manifolds
and only the singular bundle structure distinguishes between them. A similar picture makes
sense for M4 × CP2/Ga × Gb regarded as a base space for a singular bundle with Ga × Gb

as a generic fiber. Bundle projections obviously define a dual geometric representation for
Jones inclusion.

2. By the previous anyonic arguments one can assign Planck constants to both M4
± and E4

(CP2). The invariance of the angular momentum in the transition exp(imφ) → q =
exp(imφ/nb), where nb corresponds to the maximal cyclic sub-group of Gb, would suggest
that M4

± covariant metric scales as n2
b and h̄(M4

±) = nbh̄0. However, the formula consis-
tent with the model for planetary orbits and genuine fractionization of angular momentum
requires h̄(M4

±) = nah̄0.

Similar argument implies h̄(E4) = h̄(CP2) = nbh̄0. E4 metric scales naturally as n2
a but in

the case of CP2 projective character does not favor scaling and the scaling indeed leads
to difficulties as one tries to glue together different variants of CP2 isometrically (non-
isometric gluing would be however possible for CP2 factors). Neither does the number
theoretic interpretation of CP2 favor the scaling of CP2 metric. In the case of M4

± factors
the non-compactness of M4

± metric makes isometric gluing along M4
± factors possible by the

identification na1sa1 = na2sa2 , where sai denotes the appropriate light-cone proper time.

The way out of the problem is the invariance of Kähler action under overall scaling of H
metric by 1/n2

a so that the net scaling factor of M4 covariant metric is (nb/na)2 with CP2

metric remaining invariant. Effective Planck constant can be regarded as only a conversion
factor and scaling of Planck constants has a purely geometric interpretation.

3. Quantum classical correspondence suggests that Planck constants appear at the level of the
classical dynamics. The first thing to notice is that Kähler action does not depend on the
overall scaling of H metric. If also CP2 metric is scaled up the classical physics as defined
by the extremals of Kähler action depends only on the ratio na/nb so that would have
symmetry (na, nb) → k(na, nb). This is a non-trivial prediction since bundle coverings are
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different. Note however that the distinction between coverings related by scaling is visible
in the dynamics involving other levels of dark matter hierarchy. The dependence of Kähler
action on na/nb could be interpreted in terms of radiative corrections coded to the Kähler
function so that the vanishing of higher order radiative corrections on the functional integral
over 3-surfaces around maxima of Kähler function does not lead to a conflict with the fact
that radiative corrections must be non-vanishing.

4. In the case of M4
± the orbifold singularity is not only the tip of the light-cone as one might first

think. For all groups Ga except E6 and E8 the singularity is the time-like plane corresponding
to a radial ray through origin defining the quantization axis of angular momentum and
intersecting light-cone boundary along a preferred light-like ray. For E6 and E8 (tedrahedral
and icosahedral symmetries) the singularity is time-like line and in this case there are several
alternative identifications of the quantization axes as axis around which the maximal cyclic
subgroup acts as rotations.

5. From foregoing it should be obvious that Jones inclusions represented in this manner would
relate very closely to the selection of quantization axes and provide a geometric representation
for this selection at the level of space-time and configuration space. The existence of the
preferred direction of quantization at a given level of dark matter level should have observable
consequences. For instance, in cosmology this could mean a breaking of perfect rotational
symmetry at dark matter space-time sheets. The interpretation would be as a quantum effect
in cosmological length scales. An interesting question is whether the observed asymmetry of
cosmic microwave background could have interpretation as a quantum effect in cosmological
length and time scales.

3.1.4 About G-invariance of configuration space spinors

Consider now in more detail the question what G = Ga × Gb-invariance of spinors of world of
classical worlds (as opposed to spinor fields) could mean.

1. Suppose that partonic 2-surfaces are invariant under G so that one has effectively H = H/G.

2. Pose G-invariance condition on the allowed combinations of fermionic oscillator operators
whose transformation properties under G are determined by those for the eigen modes of
the modified Dirac operator. Spinor modes would naturally transform according to irre-
ducible representations of G. Only the products of fermionic oscillator operators satisfying
G-invariance condition would be allowed for N ⊂ M. The interpretation in terms of quan-
tum measurement theory would suggest that the action of G-invariant fermionic operators on
a given state creates states not distinguishable from the original one. ADE correspondence
would suggests that the Clifford algebra elements not invariant under G can be organized to
the representations of product of ADE Lie groups corresponding to Ga and Gb.

3. G has a natural action on the modes of Ψ as spinor rotations given by

Ψ(z) = D(g)Ψ(g−1(z)) .

and spinor modes should transform irreducibly under G under this action.

4. Suppose that the generalized eigen modes of the modified Dirac operator are proportional
to a function of form f(r, z) = piζ−1(z)g(r), where z represents the projection of the point of
partonic 2-surface to the geodesic sphere of CP2 and corresponds to the projective complex
coordinate of S2 such that z = 0 and z = 1 corresponds to orbifold points invariant under
entire Gb for all other subgroups of SU(2) ⊂ SU(3) except tedrahedral and icosahedral
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groups. In this case only maximal cyclic subgroup would leave the orbifold points consisting
of vertices of tedrahedron resp. icosahedron invariant.

5. The definition of number theoretic braids is not Gb invariant orbifold points since z =
ζ(

∑
k nksk), where one has ζ(sk = 1/2 + iyk) = 0, yk > 0 and nk ≥ 0 (recall the con-

jectured number theoretical universality of ζ), correspond to the points at which f(r, z)
reduces to an algebraic number if piyk are assumed to be algebraic numbers. The reason is
that gb(ζ(

∑
k nksk)) is not expected to be of the general form ζ(

∑
k nksk). The exception

is formed by the zeros and poles of ζ corresponding to quantum criticality for the phase
transition changing the value of CP2 Planck constant.

6. One can consider also the possibility that both the geodesic sphere S2
± associated with δM4

±
and CP2 geodesic sphere S2 contributes to the generalized eigen modes so that one would
have

Ψ ∝ pi(ζ−1(z))+ζ−1(w)) ,

with z ∈ S2 and w ∈ S2
±. Only the points (z, w) ∈ {0,∞} × {0,∞} could contribute to the

definition of S-matrix at quantum criticality.

3.2 A further generalization of the notion of imbedding space?

The original idea was that the proposed modification of the imbedding space could explain natu-
rally phenomena like quantum Hall effect involving fractionization of quantum numbers like spin
and charge. This does not however seem to be the case. Ga×Gb implies just the opposite if these
quantum numbers are assigned with the symmetries of the imbedding space. For instance, quanti-
zation unit for orbital angular momentum becomes na where Zna is the maximal cyclic subgroup
of Ga.

One can however imagine of obtaining fractionization at the level of imbedding space for space-
time sheets, which are analogous to multi-sheeted Riemann surfaces (say Riemann surfaces associ-
ated with z1/n since the rotation by 2π understood as a homotopy of M4 lifted to the space-time
sheet is a non-closed curve. Continuity requirement indeed allows fractionization of the orbital
quantum numbers and color in this kind of situation.

3.3 Both covering spaces and factor spaces are possible

The observation above stimulates the question whether it might be possible in some sense to replace
H or its factors by their multiple coverings.

1. This is certainly not possible for M4, CP2, or H since their fundamental groups are trivial.
On the other hand, the fixing of quantization axes implies a selection of the sub-space H4 =
M2 × S2 ⊂ M4 × CP2, where S2 is a geodesic sphere of CP2. M̂4 = M4\M2 and ĈP 2 =
CP2\S2 have fundamental group Z since the codimension of the excluded sub-manifold is
equal to two and homotopically the situation is like that for a punctured plane. The exclusion
of these sub-manifolds defined by the choice of quantization axes could naturally give rise to
the desired situation.

2. Zero energy ontology forces to modify this picture somewhat. In zero energy ontology causal
diamonds (CDs) defined as the intersections of future and past directed light-cones are loci
for zero energy states containing positive and negative energy parts of state at the two light-
cone boundaries. The location of CD in M4 is arbitrary but p-adic length scale hypothesis
suggests that the temporal distances between tips of CD come as powers of 2 using CP2 size
as unit. Thus M4 is replaces by CD and M̂4 is replaced with ĈD defined in obvious manner.
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3. H4 represents a straight cosmic string inside CD. Quantum field theory phase corresponds
to Jones inclusions with Jones index M : N < 4. Stringy phase would by previous arguments
correspond to M : N = 4. Also these Jones inclusions are labeled by finite subgroups of
SO(3) and thus by Zn identified as a maximal Abelian subgroup.

One can argue that cosmic strings are not allowed in QFT phase. This would encourage the
replacement ĈD × ˆCP2 implying that surfaces in CD × S2 and (M2 ∩ CD) × CP2 are not
allowed. In particular, cosmic strings and CP2 type extremals with M4 projection in M2

and thus light-like geodesic without zitterwebegung essential for massivation are forbidden.
This brings in mind instability of Higgs=0 phase.

4. The covering spaces in question would correspond to the Cartesian products ĈDna × ˆCP2nb

of the covering spaces of ĈD and ˆCP2 by Zna and Znb
with fundamental group is Zna ×Znb

.
One can also consider extension by replacing M2 ∩ CD and S2 with its orbit under Ga

(say tedrahedral, octahedral, or icosahedral group). The resulting space will be denoted by
ĈD×̂Ga resp. ˆCP2×̂Gb.

5. One expects the discrete subgroups of SU(2) emerge naturally in this framework if one allows
the action of these groups on the singular sub-manifolds M2∩CD or S2. This would replace
the singular manifold with a set of its rotated copies in the case that the subgroups have
genuinely 3-dimensional action (the subgroups which corresponds to exceptional groups in
the ADE correspondence). For instance, in the case of M2 ∩ CD the quantization axes for
angular momentum would be replaced by the set of quantization axes going through the
vertices of tedrahedron, octahedron, or icosahedron. This would bring non-commutative
homotopy groups into the picture in a natural manner.

6. Also the orbifolds ĈD/Ga× ˆCP2/Gb can be allowed as also the spaces ĈD/Ga× ( ˆCP2×̂Gb)
and (ĈD×̂Ga) × ˆCP2/Gb. Hence the previous framework would generalize considerably by
the allowance of both coset spaces and covering spaces.

There are several non-trivial questions related to the details of the gluing procedure and phase
transition as motion of partonic 2-surface from one sector of the imbedding space to another one.

1. How the gluing of copies of imbedding space at (M2 ∩ CD) × CP2 takes place? It would
seem that the covariant metric of M4 factor proportional to h̄2 must be discontinuous at
the singular manifold since only in this manner the idea about different scaling factor of
M4 metric can make sense. This is consistent with the identical vanishing of Chern-Simons
action in M2 × S2.

2. One might worry whether the phase transition changing Planck constant means an instanta-
neous change of the size of partonic 2-surface in CD degrees of freedom. This is not the case.
Light-likeness in (M2 ∩CD)×S2 makes sense only for surfaces X1×D2 ⊂ (M2 ∩CD)×S2,
where X1 is light-like geodesic. The requirement that the partonic 2-surface X2 moving from
one sector of H to another one is light-like at (M2 ∩ CD) × S2 irrespective of the value of
Planck constant requires that X2 has single point of (M2 ∩ CD) as M2 projection. Hence
no sudden change of the size X2 occurs.

3. A natural question is whether the phase transition changing the value of Planck constant
can occur purely classically or whether it is analogous to quantum tunneling. Classical
non-vacuum extremals of Chern-Simons action have two-dimensional CP2 projection to ho-
mologically non-trivial geodesic sphere S2

I . The deformation of the entire S2
I to homologically

trivial geodesic sphere S2
II is not possible so that only combinations of partonic 2-surfaces

with vanishing total homology charge (Kähler magnetic charge) can in principle move from

22



sector to another one, and this process involves fusion of these 2-surfaces such that CP2

projection becomes single homologically trivial 2-surface. A piece of a non-trivial geodesic
sphere S2

I of CP2 can be deformed to that of S2
II using 2-dimensional homotopy flattening the

piece of S2 to curve. If this homotopy cannot be chosen to be light-like, the phase transitions
changing Planck constant take place only via quantum tunnelling. Obviously the notions of
light-like homotopies (cobordisms) and classical light-like homotopies (cobordisms) are very
relevant for the understanding of phase transitions changing Planck constant.

3.4 Do factor spaces and coverings correspond to the two kinds of Jones
inclusions?

What could be the interpretation of these two kinds of spaces?

1. Jones inclusions appear in two varieties corresponding to M : N < 4 and M : N = 4 and one
can assign a hierarchy of subgroups of SU(2) with both of them. In particular, their maximal
Abelian subgroups Zn label these inclusions. The interpretation of Zn as invariance group is
natural for M : N < 4 and it naturally corresponds to the coset spaces. For M : N = 4 the
interpretation of Zn has remained open. Obviously the interpretation of Zn as the homology
group defining covering would be natural.

2. M : N = 4 should correspond to the allowance of cosmic strings and other analogous objects.
Does the introduction of the covering spaces bring in cosmic strings in some controlled
manner? Formally the subgroup of SU(2) defining the inclusion is SU(2) would mean that
states are SU(2) singlets which is something non-physical. For covering spaces one would
however obtain the degrees of freedom associated with the discrete fiber and the degrees
of freedom in question would not disappear completely and would be characterized by the
discrete subgroup of SU(2).

For anyons the non-trivial homotopy of plane brings in non-trivial connection with a flat
curvature and the non-trivial dynamics of topological QFTs. Also now one might expect
similar non-trivial contribution to appear in the spinor connection of ĈD×̂Ga and ĈP 2×̂Gb.
In conformal field theory models non-trivial monodromy would correspond to the presence
of punctures in plane.

3. For factor spaces the unit for quantum numbers like orbital angular momentum is multiplied
by na resp. nb and for coverings it is divided by this number. These two kind of spaces are
in a well defined sense obtained by multiplying and dividing the factors of Ĥ by Ga resp. Gb

and multiplication and division are expected to relate to Jones inclusions with M : N < 4
and M : N = 4, which both are labeled by a subset of discrete subgroups of SU(2).

4. The discrete subgroups of SU(2) with fixed quantization axes possess a well defined multipli-
cation with product defined as the group generated by forming all possible products of group
elements as elements of SU(2). This product is commutative and all elements are idempo-
tent and thus analogous to projectors. Trivial group G1, two-element group G2 consisting
of reflection and identity, the cyclic groups Zp, p prime, and tedrahedral, octahedral, and
icosahedral groups are the generators of this algebra.

By commutativity one can regard this algebra as an 11-dimensional module having natural
numbers as coefficients (”rig”). The trivial group G1, two-element group G2¡ generated by re-
flection, and tedrahedral, octahedral, and icosahedral groups define 5 generating elements for this
algebra. The products of groups other than trivial group define 10 units for this algebra so that
there are 11 units altogether. The groups Zp generate a structure analogous to natural num-
bers acting as analog of coefficients of this structure. Clearly, one has effectively 11-dimensional
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commutative algebra in 1-1 correspondence with the 11-dimensional ”half-lattice” N11 (N denotes
natural numbers). Leaving away reflections, one obtains N7. The projector representation suggests
a connection with Jones inclusions. An interesting question concerns the possible Jones inclusions
assignable to the subgroups containing infinitely manner elements. Reader has of course already
asked whether dimensions 11, 7 and their difference 4 might relate somehow to the mathematical
structures of M-theory with 7 compactified dimensions. One could introduce generalized configura-
tion space spinor fields in the configuration space labelled by sectors of H with given quantization
axes. By introducing Fourier transform in N11 one would formally obtain an infinite-component
field in 11-D space.

The question how do the Planck constants associated with factors and coverings relate is far
from trivial and I have considered several options.

1. If one assumes that h̄2(X), X = M4, CP2 corresponds to the scaling of the covariant metric
tensor gij and performs an over-all scaling of metric allowed by Weyl invariance of Kähler
action by dividing metric with h̄2(CP2), one obtains r2 ≡ h̄2/h̄2

0h̄
2(M4)/h̄2(CP2). This puts

M4 and CP2 in a very symmetric role and allows much more flexibility in the identification
of symmetries associated with large Planck constant phases.

2. Algebraist would argue that Planck constant must define a homomorphism respecting multi-
plication and division (when possible) by Gi. This requires r(X) = h̄(X)h̄0 = n for covering
and r(X) = 1/n for factor space or vice versa. This gives two options.

3. Option I: r(X) = n for covering and r(X) = 1/n for factor space gives r ≡ h̄/h̄0 =
r(M4)/r(CP2). This gives r = na/nb for Ĥ/Ga×Gb option and r = nb/na for Ĥ ˆtimes(Ga×
Gb) option with obvious formulas for hybrid cases.

4. Option II: r(X) = 1/n for covering and r(X) = n for factor space gives r = r(CP2)/r(M4).
This gives r = nb/na for Ĥ/Ga×Gb option and r = na/nb for Ĥ ˆtimes(Ga×Gb) option with
obvious formulas for the hybrid cases.

5. At quantum level the fractionization would come from the modification of fermionic anti-
commutation (bosonic commutation) relations involving h̄ at the right hand side so that
particle number becomes a multiple of 1/n or n. If one postulates that the total number
states is invariant in the transition, the increase in the number of sheets is compensated
by the increase of the fundamental phase space volume proportional to h̄. This would give
r(X) → r(X)/n for factor space and r(X) → nr(X) for the covering space to compensate
the n-fold reduction/increase of states. This would favor Option II.

6. The second manner to distinguish between these two options is to apply the theory to concrete
physical situations. Since Ga and Gb act as symmetries in CD and CP2 degrees of freedom,
one might of being able to distinguish between the two options if it is possible to distinguish
between the action of G as symmetry of quantum states associated with covering and factor
space. Also the quantization of the orbital spin quantum number at single particle level as
multiples of n can be distinguished from that in multiples of 1/n.

3.5 A simple model of fractional quantum Hall effect

The generalization of the imbedding space suggests that it could possible to understand fractional
quantum Hall effect [49] at the level of basic quantum TGD. This section represents the first rough
model of QHE constructed for a couple of years ago is discussed. Needless to emphasize, the model
represents only the basic idea and involves ad hoc assumption about charge fractionization.

Recall that the formula for the quantized Hall conductance is given by
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σ = ν × e2

h
,

ν =
n

m
. (3)

Series of fractions in ν = 1/3, 2/5, 3/7, 4/9, 5/11, 6/13, 7/15..., 2/3, 3/5, 4/7, 5/9, 6/11, 7/13..., 5/3, 8/5, 11/7, 14/9...4/3, 7/5, 10/7, 13/9...,
1/5, 2/9, 3/13..., 2/7, 3/11..., 1/7.... with odd denominator have been observed as are also ν = 1/2
and ν = 5/2 states with even denominator [49].

The model of Laughlin [48] cannot explain all aspects of FQHE. The best existing model
proposed originally by Jain is based on composite fermions resulting as bound states of electron
and even number of magnetic flux quanta [50]. Electrons remain integer charged but due to the
effective magnetic field electrons appear to have fractional charges. Composite fermion picture
predicts all the observed fractions and also their relative intensities and the order in which they
appear as the quality of sample improves.

The generalization of the notion of imbedding space suggests the possibility to interpret these
states in terms of fractionized charge, spin, and electron number. There are four combinations of
covering and factors spaces of CP2 and three of them can lead to the increase of Planck constant.
Besides this there are two options for the formula of Planck constant so that which the very meager
theoretical background one can make only guesses. On the following just for fun consideration
option I is considered although the conservation of number of states in the phase transition changing
h̄ favors option II.

1. The easiest manner to understand the observed fractions is by assuming that both M4 and
CP2 correspond to covering spaces so that both spin and electric charge and fermion number
are fractionized. This means that e in electronic charge density is replaced with fractional
charge. Quantized magnetic flux is proportional to e and the question is whether also here
fractional charge appears. Assume that this does not occur.

2. With this assumption the expression for the Planck constant becomes for Option II as r =
h̄/h̄0 = na/nb and charge and spin units are equal to 1/nb and 1/na respectively. This gives
ν = nna/nb. The values m = 2, 3, 5, 7, .. are observed. Planck constant can have arbitrarily
large values. There are general arguments stating that also spin is fractionized in FQHE.

3. The appearance of ν = 5/2 has been observed [51]. The fractionized charge is e/4 in this
case. Since ni > 3 holds true if coverings are correlates for Jones inclusions, this requires to
nb = 4 and na = 10. nb predicting a correct fractionization of charge. The alternative option
would be nb = 2 that also Z2 would appear as the fundamental group of the covering space.
Filling fraction 1/2 corresponds in the composite fermion model and also experimentally
to the limit of zero magnetic field [50]. nb = 2 is however inconsistent with the observed
fractionization of electric charge and with the vision inspired by Jones inclusions.

4. A possible problematic aspect of the TGD based model is the experimental absence of even
values of nb except nb = 2 (Laughlin’s model predicts only odd values of n). A possible
explanation is that by some symmetry condition possibly related to fermionic statistics (as
in Laughlin model) na/nb must reduce to a rational with an odd denominator for nb > 2. In
other words, one has na ∝ 2r, where 2r the largest power of 2 divisor of nb.

5. Large values of na emerge as B increases. This can be understood from flux quantization.
One has e

∫
BdS = nh̄(M4) = nnah̄0. By using actual fractional charge eF = e/nb in the

flux factor would give eF

∫
BdS = n(na/nb)h̄0 = nh̄. The interpretation is that each of the

na sheets contributes one unit to the flux for e. Note that the value of magnetic field in given
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sheet is not affected so that the build-up of multiple covering seems to keep magnetic field
strength below critical value.

6. The understanding of the thermal stability is not trivial. The original FQHE was observed
in 80 mK temperature corresponding roughly to a thermal energy of T ∼ 10−5 eV. For
graphene the effect is observed at room temperature. Cyclotron energy for electron is (from
fe = 6×105 Hz at B = .2 Gauss) of order thermal energy at room temperature in a magnetic
field varying in the range 1-10 Tesla. This raises the question why the original FQHE requires
so low temperature. The magnetic energy of a flux tube of length L is by flux quantization
roughly e2B2S ∼ Ec(e)meL (h̄0 = c = 1) and exceeds cyclotron roughly by a factor L/Le,
Le electron Compton length so that thermal stability of magnetic flux quanta is not the
explanation. A possible explanation is that since FQHE involves several values of Planck
constant, it is quantum critical phenomenon and is characterized by a critical temperature.
The differences of the energies associated with the phase with ordinary Planck constant and
phases with different Planck constant would characterize the transition temperature.

As already noticed, it is possible to imagine several other options and the identification of
charge unit is rather ad hoc. Therefore this model can be taken only as a warm-up exercise.

3.5.1 What is the role of dimensions?

Could the dimensions of M4 and CP2 and the dimensions of spaces defined by the choice of
the quantization axes play a fundamental role in the construction from the constraint that the
fundamental group is non-trivial?

1. Suppose that the sub-manifold in question is geodesic sub-manifold containing the orbits of
its points under Cartan subgroup defining quantization axes. A stronger assumption would
be that the orbit of maximal compact subgroup is in question.

2. For M2n Cartan group contains translations in time direction with orbit M1 and Cartan
subgroup of SO(2n − 1) and would be Mn so that M̂2n would have a trivial fundamental
group for n > 2. Same result applies in massless case for which one has SO(1, 1)×SO(2n−2)
acts as Cartan subgroup. The orbit under maximal compact subgroup would not be in
question.

3. For CP2 homologically non-trivial geodesic sphere CP1 contains orbits of the Cartan sub-
group. For CPn = SU(n + 1)/SU(n) × U(1) having real dimension 2n the sub-manifold
CPn−1 contains orbits of the Cartan subgroup and defines a sub-manifold with codimension
2 so that the dimensional restriction does not appear.

4. For spheres Sn−1 = SO(n)/SO(n−1) the dimension is n−1 and orbit of SO(n−1) of point
left fixed by Cartan subgroup SO(2)× .. would for n = 2 consist of two points and Sn−2 in
more general case. Again co-dimension 2 condition would be satisfied.

3.5.2 What about holes of the configuration space?

One can raise analogous questions at the level of configuration space geometry. Vacuum extremals
correspond to Lagrangian sub-manifolds Y 2 ⊂ CP2 with vanishing induced Kähler form. They
correspond to singularities of the configuration space (”world of classical worlds”) and configura-
tion space spinor fields should vanish for the vacuum extremals. Effectively this would mean a hole
in configuration space, and the question is whether this hole could also naturally lead to the intro-
duction of covering spaces and factor spaces of the configuration spaces. How much information
about the general structure of the theory just this kind of decomposition might allow to deduce?
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This kind of singularities are infinite-dimensional variants of those discussed in catastrophe theory
and this suggests that their understanding might be crucial.

3.6 Dark rules

I have done a considerable amount of trials and errors in order to identify the basic rules allowing
to understand what it means to be dark matter is and what happens in the phase transition to
dark matter. It is good to try to summarize the basic rules of p-adic and dark physics allowing to
avoid obvious contradictions.

3.6.1 The notion of field body

The notion of ”field body” implied by topological field quantization is essential. There would be em,
Z0, W , gluonic, and gravitonic field bodies, each characterized by its one prime. The motivation for
considering the possibility of separate field bodies seriously is that the notion of induced gauge field
means that all induced gauge fields are expressible in terms of four CP2 coordinates so that only
single component of a gauge potential allows a representation as and independent field quantity.
Perhaps also separate magnetic and electric field bodies for each interaction and identifiable as
flux quanta must be considered. This kind of separation requires that the fermionic content of the
flux quantum (say fermion and anti-fermion at the ends of color flux tube) is such that it conforms
with the quantum numbers of the corresponding boson.

What is interesting that the conceptual separation of interactions to various types would have
a direct correlate at the level of space-time topology. From a different perspective inspired by
the general vision that many-sheeted space-time provides symbolic representations of quantum
physics, the very fact that we make this conceptual separation of fundamental interactions could
reflect the topological separation at space-time level.

The p-adic mass calculations for quarks encourage to think that the p-adic length scale charac-
terizing the mass of particle is associated with its electromagnetic body and in the case of neutrinos
with its Z0 body. Z0 body can contribute also to the mass of charged particles but the contribution
would be small. It is also possible that these field bodies are purely magnetic for color and weak
interactions. Color flux tubes would have exotic fermion and anti-fermion at their ends and define
colored variants of pions. This would apply not only in the case of nuclear strings but also to
molecules and larger structures so that scaled variants of elementary particles and standard model
would appear in all length scales as indeed implied by the fact that classical electro-weak and color
fields are unavoidable in TGD framework.

One can also go further and distinguish between magnetic field body of free particle for which
flux quanta start and return to the particle and ”relative field” bodies associated with pairs of
particles. Very complex structures emerge and should be essential for the understanding the
space-time correlates of various interactions. In a well-defined sense they would define space-time
correlate for the conceptual analysis of the interactions into separate parts. In order to minimize
confusion it should be emphasized that the notion of field body used in this chapter relates to those
space-time correlates of interactions, which are more or less static and related to the formation of
bound states.

3.6.2 Critical comment

The proposed scenario could be criticized because subgroups of SU(2) are in a preferred position.
The Jones inclusions considered correspond to quantum spinor representations of various quantum
groups SU(2)q, q = exp(i2π/n). This explains the result M : N ≤ 4. These representations are
certainly in preferred role as far as configuration space spinor field are considered but it is possible
to assign a hierarchy of Jones inclusions labelled by quantum phase q with arbitrary representation
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of an arbitrary compact Lie group. These inclusions would be analogous to discrete states in the
continuum M : N > 4 (see Appendix for details).

One could argue that there should be universality of some kind so that only those discrete
groups which appear as subgroups of any compact Lie group are assigned with the sectors of the
extended imbedding space. If one considers only non-commutative Lie groups, universality allows
all discrete subgroups of SU(2). If also Abelian compact Lie groups, and thus also U(1), are
allowed, then only the spaces H/Zna

×Gb, where Gb is abelian subgroup of SU(3) could be glued
together to form the extended imbedding space.

Concerning the group Gb the working hypothesis was Gb ⊂ U(1)I ⊂ SU(2) ⊂ SU(3). The
reason for this restriction was the erratic belief that discrete subgroups of arbitrary Lie group
cannot be associated with the inclusions of hyper-finite factors. This is possible. These inclusions
have M : N > 4 and are analogous to bounds states in continuum (Appendix).

A physically attractive possibility is that Ga × Gb leaves the choice of quantization axes in-
variant. This would leave only Abelian groups into consideration and drop D2n, E6, and E8. It is
quite possible that only these groups define sectors of the generalized imbedding space.

This means that Gb = Zn1 × Zn2 ⊂ U(1)I × U(1)Y ⊂ SU(2) × U(1)Y and even more general
subgroups of SU(3) (if non-commutativity is allowed) are a priori possible. Since the inclusions
are characterized by single quantum phase q = exp(i2π/n) in the case of compact Lie groups (Ap-
pendix), it seems that one must have n1 = n2 ≡ nb guaranteing the uniqueness of the identification
of the Planck constant. Note that once the CP2 coordinates transforming linearly under U(2) are
fixed, also U(1)Y is fixed so that only U(1)I can be chosen freely. For Ga×Gb = Zna ×Znb

×Znb

partonic 2-surface would belong to M2 × CP2/U(1)× U(1), where M2 is spanned by the quanti-
zation axis of angular momentum and the time axis defining the rest system.

The products of groups Zn are also number theoretically in a very special position since they
relate naturally to the finite cyclic extensions and also to the maximal Abelian extension of ratio-
nals. With this restriction on Ga ×Gb one can consider the hypothesis that elementary particles
correspond are maximally quantum critical systems left invariant by all groups Ga×Gb respecting
a given choice of quantization axis and implying that darkness is associated only to field bodies and
Planck constant becomes characterizer of interactions rather than elementary particles themselves.

A category theoretic picture in which elementary particles correspond to objects and field
bodies to morphisms would suggest itself at least in metaphoric sense. The arrows in this category
would be bi-directional. The notion of infinite prime involving endless second quantization of an
arithmetic quantum field theory with many particle states of the previous level becoming particles
at the next level in one-one correspondence with the hierarchy of space-time sheets suggests that
there is an infinite hierarchy of ”particles” such that the particle identified as a category at a given
level of the hierarchy becomes object of the category defining particle at the next level.

3.6.3 What dark variant of elementary particle could mean?

It is not at all clear what the notion of dark variant of elementary particle or of larger structures
could mean.

1. Are only field bodies dark?

One variety of dark particle is obtained by making some of the field bodies dark by increasing
the value of Planck constant. This hypothesis could be replaced with the stronger assumption that
elementary particles are maximally quantum critical systems so that they are same irrespective of
the value of the Planck constant. Elementary particles would be represented by partonic 2-surfaces,
which belong to the universal orbifold singularities remaining invariant by all groups Ga ×Gb for
a given choice of quantization axes. If Ga × Gb is assumed to leave invariant the choice of the
quantization axes, it must be of the form Zna×Gb ⊂ SO(3)×SU(3). For Gb = Znb

×Znb
partonic
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2-surface would belong to M2 ×CP2/U(1)×U(1), where M2 is spanned by the quantization axis
of angular momentum and the time axis defining the rest system.

A different manner to say this is that the CP2 type extremal representing particle would suffer
multiple topological condensation at its field bodies so that there would be no separate ”particle
space-time sheet”.

Darkness would be restricted to particle interactions. The value of the Planck constant would
be assigned to a particular interaction between systems rather than system itself. This conforms
with the original finding that gravitational Planck constant satisfies h̄ = GM1M2/v0, v0 ' 2−11.
Since each interaction can give rise to a hierarchy dark phases, a rich variety of partially dark
phases is predicted. The standard assumption that dark matter is visible only via gravitational
interactions would mean that gravitational field body would not be dark for this particular dark
matter.

Complex combinations of dark field bodies become possible and the dream is that one could un-
derstand various phases of matter in terms of these combinations. All phase transitions, including
the familiar liquid-gas and solid-liquid phase transitions, could have a unified description in terms
of dark phase transition for an appropriate field body. At mathematical level Jones inclusions
would provide this description.

The book metaphor for the interactions at space-time level is very useful in this framework.
Elementary particles correspond to ordinary value of Planck constant analogous to the ordinary
sheets of a book and the field bodies mediating their interactions are the same space-time sheet or
at dark sheets of the book.

2. Connection with quantum criticality

The assumption that elementary particles are maximally quantum critical in the proposed sense
would give a precise content for the notion of quantum criticality at elementary particle level. For
a given choice of quantization axes partonic 2-surfaces associated with elementary particles would
live in the 4-D intersection M2 × CP2/U(1)× U(1) of copies of H.

The so called factorizing quantum field theories exist only in M2, and S-matrix is almost trivial
in momentum degrees of freedom involving only permutation of momenta. This point is discussed
in [C2], where I consider the possibility that U-matrix between zero energy states (not the same as
S-matrix defined as time-like entanglement coefficients between positive and negative energy parts
of zero energy state) could reduce to a tensor product of factorizing S-matrices.

With appropriate restrictions on the rapidities of incoming and outgoing particles the S-matrix
would be algebraic and define U-matrix also for p-adic-to-real transitions assignable to the realiza-
tion of intensions as actions. In this context, the almost-triviality would turn to a blessing implying
a precise correspondence between intentions and actions (in the resolution considered). Intentions
would be naturally transformed to actions at complete quantum criticality since this implies best
possible ”grasp on situation” at 4-D space-time level (CP2 type extremals have random light-like
curve as M4 projection).

3. Can also elementary particles be dark?

Also dark elementary particles themselves rather than only the flux quanta could correspond
to dark space-time sheet defining multiple coverings of H/Ga×Gb. This would mean giving up the
maximal quantum criticality hypothesis in the case of elementary particles. These sheets would
be exact copies of each other. If single sheet of the covering contains topologically condensed
space-time sheet, also other sheets contain its exact copy.

The question is whether these copies of space-time sheet defining classical identical systems can
carry different fermionic quantum numbers or only identical fermionic quantum numbers so that
the dark particle would be exotic many-fermion system allowing an apparent violation of statistics
(N fermions in the same state).
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Even if one allows varying number of fermions in the same state with respect to a basic copy of
sheet, one ends up with the notion of N -atom in which nuclei would be ordinary but electrons would
reside at the sheets of the covering. The question is whether symbolic representations essential
for understanding of living matter could emerge already at molecular level via the formation of
N -atoms.

3.6.4 Microscopic model for dark elementary particles

The construction of a model for the detection of gravitational radiation assuming that gravitons
correspond to a gigantic gravitational constant was carried out in [D6]. One can say that dark
gravitons are Bose-Einstein condensates of ordinary gravitons. This suggests that Bose-Einstein
condensates of some kind could accompany and perhaps even characterize also the dark variants
of ordinary elementary particles.

1. Higgs boson Bose-Einstein condensate as characterized of Planck constant

The following picture is the simplest I have been able to imagine hitherto.

1. Suppose that darkness corresponds to the darkness of the field bodies (em, Z0,W,...) of the
elementary particle so that the elementary particle proper is not affected in the transition to
large h̄ phase. This stimulates the idea that some Bose-Einstein condensate associated with
the field body provides a microscopic description for the darkness and that one can relate
the value of h̄ to the properties of Bose-Einstein condensate.

2. Since the spin of the particle is not affected in the transition, it would seem that the bosons
in question are Lorentz scalars. Hence a Bose-Einstein condensate of Higgs suggests itself
as the relevant structure. Higgs would have a double role since the coherent state of Higgs
bosons associated with the field body would be responsible for or at least closely relate to
the contribution to the mass of fermion identified usually in terms of a coupling to Higgs.
The ground state would correspond to a coherent state annihilated by the new annihilation
operators unitarily related to the original ones. Bose-Einstein condensate would be obtained
as a many-Higgs state obtaining by applying these creation operators and would not be an
eigen state of particle number in the old basis.

3. As a rule, quantum classical correspondence is a good guideline. Suppose that the field body
corresponds to a pair of positive and negative energy MEs connected by wormhole contacts
representing the bosons forming the Bose-Einstein condensate. This structure could be more
or less universal. In the general case MEs carry light-like gauge currents and light-like
Einstein tensor. These currents can also vanish and should do so for the ground state. MEs
could carry both coherent states of gauge bosons and gravitons but would not be present
in the ground state. The CP2 part of the trace of second fundamental form transforming
as SO(4) vector and doublet with respect to the groups SU(2)L and SU(2)R, is the only
possible candidate for the classical Higgs field. The Fourier spectrum of CP2 coordinates has
only light-like longitudinal momenta so that four-momenta are slightly tachyonic for non-
vanishing transverse momenta. This state of facts might be a space-time correlate for the
tachyonic character of Higgs.

4. The quantum numbers of the particle should not be affected in the transition changing the
value of Planck constant. The simplest explanation is that Higgs bosons have a vanishing net
energy. This is possible since in the case of bosons the two wormhole throats have different
sign of energy. Indeed, if the energies, spins, and em charges of fermion and antifermion at
wormhole throats are of opposite sign, one is left with a coherent state of zero energy Higgs
particles as a microscopic description for constant value of Higgs field.
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5. How do the properties of the Bose-Einstein condensate of Higgs relate to the value of Planck
constant? MEs should remain invariant under the discrete groups Zna

and Znb
and the

bosons at the sheets of the multiple covering should be in identical state. The number
na × nb of zero energy Higgs bosons in the Bose-Einstein condensate would characterize the
darkness at microscopic level.

2. How this affects the view about particle massivation?

This scenario would allow to add some details to the general picture about particle massivation
reducing to p-adic thermodynamics plus Higgs mechanism, both of them having description in
terms of conformal weight.

1. The mass squared equals to the p-adic thermal average of the conformal weight. There are
two contributions to this thermal average. One from the p-adic thermodynamics for super
conformal representations, and one from the thermal average related to the spectrum of
generalized eigenvalues λ of the modified Dirac operator D. Higgs expectation value appears
in the role of a mass term in the Dirac equation just like λ in the modified Dirac equation.
For the zero modes of D λ vanishes.

2. There are good motivations to believe that λ is expressible as a superposition of zeros of
Riemann zeta or some more general zeta function. The problem is that λ is complex. Since
Dirac operator is essentially the square root of d’Alembertian (mass squared operator), the
natural interpretation of λ would be as a complex ”square root” of the conformal weight.

Remark: The earlier interpretation of λ as a complex conformal weight looks rather stupid in
light of this observation.

This encourages to consider the interpretation in terms of vacuum expectation of the square
root of Virasoro generator, that is generators G of super Virasoro algebra, or something analogous.
The super generators G of the super-conformal algebra carry fermion number in TGD framework
where Majorana condition does not make sense physically. The modified Dirac operators for the
two possible choices t± of the light-like vector appearing in the eigenvalue equation DΨ = λtk±ΓkΨ
could however define a bosonic algebra resembling super-conformal algebra. In fact, the operators
a± = λtk±Γk are nilpotent and anti-commute to λ so that the minimal super-algebra would be
3-dimensional.

The p-adic thermal expectation values of contractions of tk−γkD+ and tk+γkD− should co-incide
with the vacuum expectations of Higgs and its conjugate. Note that D+ and D− would be same
operator but with different definition of the generalized eigenvalue and hermitian conjugation would
map these two kinds of eigen modes to each other. The real contribution to the mass squared would
thus come naturally as 〈|λ|2〉. Of course, 〈H〉 = 〈λ〉 is only a hypothesis encouraged by the internal
consistency of the physical picture, not a proven mathematical fact.

3. Questions

This leaves still some questions.

1. Does the p-adic thermal expectation 〈λ〉 dictate 〈H〉 or vice versa? Physically it would be
rather natural that the presence of a coherent state of Higgs wormhole contacts induces
the mixing of the eigen modes of D. On the other hand, the quantization of the p-adic
temperature Tp suggests that Higgs vacuum expectation is dictated by Tp.

2. Also the phase of 〈λ〉 should have physical meaning. Could the interpretation of the imaginary
part of 〈λ〉 make possible the description of dissipation at the fundamental level?
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3. Is p-adic thermodynamics consistent with the quantal description as a coherent state? The
approach based on p-adic variants of finite temperature QFTs associate with the legs of
generalized Feynman diagrams might resolve this question neatly since thermodynamical
states would be genuine quantum states in this approach made possible by zero energy
ontology.

3.7 Modified view about mechanism giving rise to large values of Planck
constant

This picture differs radically from the earlier ad hoc hypothesis for the dependence of Planck
constant on n characterizing quantum phase since Planck constant increases without bound with
n in the recent case. The new scenario is consistent with the speculations about dark matter
as a phase with a large value of Planck constant and with the basic hypothesis used in quantum
biological modelling. It does not however allow the dependence of Planck constant on p-adic prime
which has been proposed earlier.

3.7.1 Manifold-to-orbifold transition as a transition to a non-perturbative phase

One should understand why the failure of the perturbation theory (expected to occur for αQ1Q2 >
1) induces the reduction of Clifford algebra, scaling down of CP2 metric, and whether the G-
symmetry is exact or only approximate. A partial understanding already exists. The discrete
G symmetry and the reduction of the dimension of Clifford algebra would have interpretation in
terms of a loss of degrees of freedom as a strongly bound state is formed. The multiple covering of
M4
± accompanying strong binding can be understood as an automatic consequence of G-invariance.

1. The proposed scenario can reproduce the huge value of the gravitational Planck constant.
One should however develop a convincing argument why non-perturbative phase for the
gravitating dark matter leads to a formation of orbifold M4

±/Ga with the huge value of
h̄eff = na/nb ' GM1M2/v0.

2. TGD based view about color confinement following from quantum classical correspondence
is that states of arbitrary representations of the color group with a vanishing color hyper-
charge and isospin are possible and that a symmetry breaking to SU(2)×U(1) occurs. This
symmetry reduction is consistent with the effective orbifold structure of CP2.

3. Color confinement represents the simplest example of a transition to a non-perturbative
phase. In this case A2 and n = 3 would be the natural option. The value of Planck constant
would be 3 times higher than its value in perturbative QCD. Hadronic space-time sheets
would be 3-fold coverings of M4

± and baryonic quarks of different color would reside on 3
separate sheets of the covering. This would resolve the color statistics paradox suggested by
the fact that induced spinor fields do not possess color as spin like quantum number and by
the facts that for orbifolds different quarks cannot move in independent CP2 partial waves
assignable to CP2 cm degrees of freedom as in perturbative phase.

Exactly the same mechanism would give rise to what I have called N-atoms, in particular N-
hydrogen atoms suggested to play key model in the chemistry of living matter [J6].

n = 3 anyonic statistics would give rise to para statistics mimicking QCD color at space-time
level. The folding of space-time sheet without outer boundary making it impossible for quarks to
escape the hadron would in turn serve as space-time correlate for color confinement. The singular
points of space-time sheet fixed under Gb would play a role hadron horizon analogous to black hole
horizon.
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3.7.2 Tree like structure of the extended imbedding space

Two imbedding spaces with different scalings factors of metrics are glued directly together only if
either M4

± or CP2 scaling factor is same and only along M4
± or CP2. This gives a kind of evolu-

tionary tree (actually in rather precise sense as the quantum model for evolutionary leaps as phase
transitions increasing h̄(M4

±) (that is na) demonstrates [M3]!). In this tree vertices represent given
M4
± (CP2) and lines represent CP2:s (M4

±:s) with different values of h̄(CP2) (h̄(M4)) emanating
from it much like lines from from a vertex of Feynman diagram.

1. In the phase transition between different h̄(M4
±):s the projection of the 3-surface to M4

±
becomes single point so that a cross section of CP2 type extremal representing elementary
particle is in question. Elementary particles could thus leak between different M4

±:s easily
and this could occur in large h̄(M4

±) phases in living matter and perhaps even in quantum
Hall effect. Wormhole contacts which have point-like M4

± projection would allow topolog-
ical condensation of space-time sheets with given h̄(M4

±) at those with different h̄(M4
±) in

accordance with the heuristic picture.

2. In the phase transition different between CP2:s the CP2 projection of 3-surface becomes point
so that the transition can occur in regions of space-time sheet with 1-D CP2 projection. The
regions of a connected space-time surface corresponding to different values of h̄(CP2) can
be glued together. For instance, the gluing could take place along surface X3 = S2 × T
(T corresponds time axis) analogous to black hole horizon. CP2 projection would be single
point at the surface. The contribution from the radial dependence of CP2 coordinates to the
induced metric giving ds2 = ds2(X3)+grrdr2 at X3 implies a radial gravitational acceleration
and one can say that a gravitational flux is transferred between different imbedding spaces.

Planetary Bohr orbitology predicting that only 6 per cent of matter in solar system is visible
suggests that star and planetary interiors are regions with a large value of CP2 Planck constant and
that only a small fraction of the gravitational flux flows along space-time sheets carrying visible
matter. In the approximation that visible matter corresponds to layer of thickness ∆R at the outer
surface of constant density star or planet of radius R, one obtains the estimate ∆R = .12R for
the thickness of this layer: convective zone corresponds to ∆R = .3R. For Earth one would have
∆R ∼ 70 km which corresponds to the maximal thickness of the crust. Also flux tubes connecting
ordinary matter carrying gravitational flux leaving space-time sheet with a given h̄(CP2) at three-
dimensional regions and returning back at the second end are possible. These flux tubes could
mediate dark gravitational force also between objects consisting of ordinary matter.

Concerning the mathematical description of this process, the selection of origin of M4
± or CP2

as a preferred point is somewhat disturbing. In the case of M4
± the problem disappears since con-

figuration space is union over the configuration spaces associated with future and past light cones
of M4

±: CH = CH+ ∪ CH−, CH± = ∪m∈M4CH±
m. In the case of CP2 the same interpretation

is necessary in order to not lose SU(3) invariance so that one would have CH± = ∪h∈HCH±
h .

A somewhat analogous but simpler book like structure results in the fusion of different p-adic
variants of H along common rationals (and perhaps also common algebraics in the extensions).

3.7.3 Generalization of the p-adic length scale hypothesis

The evolution in phase resolution in p-adic degrees of freedom corresponds to emergence of algebraic
extensions allowing increasing variety of phases exp(iπ/n) expressible p-adically. This evolution
can be assigned to the emergence of increasingly complex quantum phases and the increase of
Planck constant.

One expects that quantum phases q = exp(iπ/n) which are expressible using only iterated
square root operation are number theoretically very special since they correspond to algebraic
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extensions of p-adic numbers obtained by an iterated square root operation, which should emerge
first. Therefore systems involving these values of q should be especially abundant in Nature.
That arbitrarily high square roots are involved as becomes clear by studying the case n = 2k:
cos(π/2k) =

√
[1 + cos(π/2k−1)]/2.

These polygons are obtained by ruler and compass construction and Gauss showed that these
polygons, which could be called Fermat polygons, have nF = 2k

∏
s Fns sides/vertices: all Fermat

primes Fns
in this expression must be different. The analog of the p-adic length scale hypothesis

emerges since larger Fermat primes are near a power of 2. The known Fermat primes Fn = 22n

+1
correspond to n = 0, 1, 2, 3, 4 with F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537. It is not known
whether there are higher Fermat primes. n = 3, 5, 15-multiples of p-adic length scales clearly
distinguishable from them are also predicted and this prediction is testable in living matter. I have
already earlier considered the possibility that Fermat polygons could be of special importance for
cognition and for biological information processing [H8].

This condition could be interpreted as a kind of resonance condition guaranteing that scaled
up sizes for space-time sheets have sizes given by p-adic length scales. The numbers nF could take
the same role in the evolution of Planck constant assignable with the phase resolution as Mersenne
primes have in the evolution assignable to the p-adic length scale resolution.

The Dynkin diagrams of exceptional Lie groups E6 and E8 are exceptional as subgroups of
rotation group in the sense that they cannot be reduced to symmetry transformations of plane.
They correspond to the symmetry group S4 ×Z2 of tedrahedron and A5 ×Z2 of dodecahedron or
its dual polytope icosahedron (A5 is 60-element subgroup of S5 consisting of even permutations).
Maximal cyclic subgroups are Z4 and Z5 and and thus their orders correspond to Fermat polygons.
Interestingly, n = 5 corresponds to minimum value of n making possible topological quantum
computation using braids and also to Golden Mean

There is evidence for an icosahedral clustering in water [82]. Synaptic contacts contain clathrin
molecules which are truncated icosahedrons and form lattice structures and are speculated to be
involved with quantum computation like activities possibly performed by microtubules. Many
viruses have the shape of icosahedron. One can ask whether these structures could be formed
around templates formed by dark matter corresponding to 120-fold covering of CP2 points by
M4
± points and having h̄(CP2) = 5h̄0 perhaps corresponding color confined light dark quarks. Of

course, a similar covering of M4
± points by CP2 could be involved.

It should be noticed that single nucleotide in DNA double strands corresponds to a twist of
2π/10 per single DNA triplet so that 10 DNA strands corresponding to length L(151) = 10 nm (cell
membrane thickness) correspond to 3 × 2π twist. This could be perhaps interpreted as evidence
for group C10 perhaps making possible quantum computation at the level of DNA.

3.7.4 Comparison with Bohr quantization of planetary orbits

The predictions of the generalization of the p-adic length scale hypothesis are consistent with
the TGD based model for the Bohr quantization of planetary orbits and some new non-trivial
predictions follow.

1. The model can explain the enormous values of gravitational Planck constant h̄gr/h̄0 ='
GMm/v0) = na/nb. The favored values of this parameter should correspond to nFa/nFb

so
that the mass ratios m1/m2 = nFa,1nFb,2/nFb,1nFa,2 for planetary masses should be preferred.
The general prediction GMm/v0 = na/nb is of course not testable.

2. Nottale [81] has suggested that also the harmonics and subharmonics of λ are possible and in
fact required by the model for planetary Bohr orbits (in TGD framework this is not absolutely
necessary [D6]). The prediction is that favored values of n should be of form nF = 2k

∏
Fi

such that Fi appears at most once. In Nottale’s model for planetary orbits as Bohr orbits in
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solar system [D6] n = 5 harmonics appear and are consistent with either nF,a → F1nFa
or

with nF,b → nFb
/F1 if possible.

The prediction for the ratios of planetary masses can be tested. In the table below are the exper-
imental mass ratios rexp = m(pl)/m(E), the best choice of rR = [nF,a/nF,b]∗X, X common factor
for all planets, and the ratios rpred/rexp = nF,a(planet)nF,b(Earth)/nF,a(Earth)nF,b(planet). The
deviations are at most 2 per cent.

planet Me V E M J

y 213×5
17 211 × 17 29 × 5× 17 28 × 17 223×5

7

y/x 1.01 .98 1.00 .98 1.01
planet S U N P

y 214 × 3× 5× 17 221×5
17

217×17
3

24×17
3

y/x 1.01 .98 .99 .99

Table 1. The table compares the ratios x = m(pl)/(m(E) of planetary mass to the mass of
Earth to prediction for these ratios in terms of integers nF associated with Fermat polygons. y
gives the best fit for the allowed factors of the known part y of the rational nF,a/nF,b = yX
characterizing planet, and the ratios y/x. Errors are at most 2 per cent.

A stronger prediction comes from the requirement that GMm/v0 equals to n = nFa/nF,b

nF = 2k
∏

k Fnk
, where Fi = 22i

+ 1, i = 0, 1, 2, 3, 4 is Fibonacci prime. The fit using solar mass
and Earth mass gives nF = 2254× 5× 17 for 1/v0 = 2044, which within the experimental accuracy
equals to the value 211 = 2048 whose powers appear as scaling factors of Planck constant in the
model for living matter [M3]. For v0 = 4.6×10−4 reported by Nottale the prediction is by a factor
16/17.01 too small (6 per cent discrepancy).

A possible solution of the discrepancy is that the empirical estimate for the factor GMm/v0 is
too large since m contains also the the visible mass not actually contributing to the gravitational
force between dark matter objects whereas M is known correctly. The assumption that the dark
mass is a fraction 1/(1 + ε) of the total mass for Earth gives

1 + ε =
17
16

(4)

in an excellent approximation. This gives for the fraction of the visible matter the estimate
ε = 1/16 ' 6 per cent. The estimate for the fraction of visible matter in cosmos is about 4 per
cent so that estimate is reasonable and would mean that most of planetary and solar mass would
be also dark (as a matter dark energy would be in question).

That v0(eff) = v0/(1 − ε) ' 4.6 × 10−4 equals with v0(eff) = 1/(27 × F2) = 4.5956 × 10−4

within the experimental accuracy suggests a number theoretical explanation for the visible-to-dark
fraction.

The original unconsciously performed identification of the gravitational and inertial Planck
constants leads to some confusing conclusions but it seems that the new view about the quantization
of Planck constants resolves these problems and allows to see h̄gr as a special case of h̄I .

1. h̄gr is proportional to the product of masses of interacting systems and not a universal
constant like h̄. One can however express the gravitational Bohr conditions as a quantization
of circulation

∮
v · dl = n(GM/v0)h̄0 so that the dependence on the planet mass disappears

as required by Equivalence Principle. This suggests that gravitational Bohr rules relate to
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velocity rather than inertial momentum as is indeed natural. The quantization of circulation
is consistent with the basic prediction that space-time surfaces are analogous to Bohr orbits.

2. h̄gr seems to characterize a relationship between planet and central mass and quite generally
between two systems with the property that smaller system is topologically condensed at
the space-time sheet of the larger system. Thus it would seem that h̄gr is not a universal
constant and cannot correspond to a special value of ordinary Planck constant. Certainly
this would be the case if h̄I is quantized as λk-multiplet of ordinary Planck constant with
λ ' 211.

The recent view about the quantization of Planck constant in terms of coverings of M4
± seems to

resolve these problems.

1. The integer quantization of Planck constants is consistent with the huge values of gravita-
tional Planck constant within experimental resolution and the killer test for h̄ = h̄gr emerges
if one takes seriously the stronger prediction h̄gr = nF,a/nF,b.

2. One can also regard h̄gr as ordinary Planck constant h̄eff associated with the space-time
sheet along which the masses interact provided each pair (M, mi) of masses is characterized
by its own sheets. These sheets could correspond to flux tube like structures carrying the
gravitational flux of dark matter. If these sheets corresponds to nFa-fold covering of M4

±,
one can understand h̄gr as a particular instance of the h̄eff .

3.7.5 About the interpretation of the parameter v0

The formula for the gravitational Planck constant contains the parameter v0/c = 2−11. This
velocity defines the rotation velocities of distant stars around galaxies. The presence of a parameter
with dimensions of velocity should carry some important information about the geometry of dark
matter space-time sheets.

Velocity like parameters appear also in other contexts. There is evidence for the Tifft’s quan-
tization of cosmic redshifts in multiples of v0/c = 2.68× 10−5/3: also other units of quantization
have been proposed but they are multiples of v0 [90].

The strange behavior of graphene includes high conductivity with conduction electrons behaving
like massless particles with light velocity replaced with v0/c = 1/300. The TGD inspired model
[J1] explains the high conductivity as being due to the Planck constant h̄(M4) = 6h̄0 increasing
the delocalization length scale of electron pairs associated with hexagonal rings of mono-atomic
graphene layer by a factor 6 and thus making possible overlap of electron orbitals. This explains
also the anomalous conductivity of DNA containing 5- and 6-cycles [J1].

1. Is dark matter warped?

The reduced light velocity could be due to the warping of the space-time sheet associated with
dark electrons. TGD predicts besides gravitational red-shift a non-gravitational red-shift due to
the warping of space-time sheets possible because space-time is 4-surface rather than abstract
4-manifold. A simple example of everyday life is the warping of a paper sheet: it bends but is
not stretched, which means that the induced metric remains flat although one of its component
scales (distance becomes longer along direction of bending). For instance, empty Minkowski space
represented canonically as a surface of M4 × CP2 with constant CP2 coordinates can become
periodically warped in time direction because of the bending in CP2 direction. As a consequence,
the distance in time direction shortens and effective light-velocity decreases when determined from
the comparison of the time taken for signal to propagate from A to B along warped space-time
sheet with propagation time along a non-warped space-time sheet.
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The simplest warped imbedding defined by the map M4 → S1, S1 a geodesic circle of CP2.
Let the angle coordinate of S1 depend linearly on time: Φ = ωt. gtt component of metric becomes
1 − R2ω2 so that the light velocity is reduced to v0/c =

√
1−R2ω2. No gravitational field is

present.
The fact that M4 Planck constant nah̄0 defines the scaling factor n2

a of CP2 metric could
explain why dark matter resides around strongly warped imbeddings of M4. The quantization of
the scaling factor of CP2 by R2 → n2

aR2 implies that the initial small warping in the time direction
given by gtt = 1−ε, ε = R2ω2, will be amplified to gtt = 1−n2

aε if ω is not affected in the transition
to dark matter phase. na = 6 in the case of graphene would give 1− x ' 1− 1/36 so that only a
one per cent reduction of light velocity is enough to explain the strong reduction of light velocity
for dark matter.

2. Is c/v0 quantized in terms of ruler and compass rationals?

The known cases suggests that c/v0 is always a rational number expressible as a ratio of integers
associated with n-polygons constructible using only ruler and compass.

1. c/v0 = 300 would explain graphene. The nearest rational satisfying the ruler and compass
constraint would be q = 5× 210/17 ' 301.18.

2. If dark matter space-time sheets are warped with c0/v = 211 one can understand Nottale’s
quantization for the radii of the inner planets. For dark matter space-time sheets associated
with outer planets one would have c/v0 = 5× 211.

3. If Tifft’s red-shifts relate to the warping of dark matter space-time sheets, warping would
correspond to v0/c = 2.68× 10−5/3. c/v0 = 25× 17× 257/5 holds true with an error smaller
than .1 per cent.

3. Tifft’s quantization and cosmic quantum coherence

An explanation for Tifft’s quantization in terms of Jones inclusions could be that the subgroup
G of Lorentz group defining the inclusion consists of boosts defined by multiples η = nη0 of the
hyperbolic angle η0 ' v0/c. This would give v/c = sinh(nη0) ' nv0/c. Thus the dark matter
systems around which visible matter is condensed would be exact copies of each other in cosmic
length scales since G would be an exact symmetry. The property of being an exact copy applies
of course only in single level in the dark matter hierarchy. This would mean a delocalization
of elementary particles in cosmological length scales made possible by the huge values of Planck
constant. A precise cosmic analog for the delocalization of electron pairs in benzene ring would be
in question.

Why then η0 should be quantized as ruler and compass rationals? In the case of Planck
constants the quantum phases q = exp(imπ/nF ) are number theoretically simple for nF a ruler
and compass integer. If the boost exp(η) is represented as a unitary phase exp(imη) at the
level of discretely delocalized dark matter wave functions, the quantization η0 = n/nF would
give rise to number theoretically simple phases. Note that this quantization is more general than
η0 = nF,1/nF,2.

3.7.6 Comparison with TGD based model of quantum biology

The TGD based model for quantum biology relies on a hierarchy of M4
± Planck constants coming

as powers of integer na ' 211. This hierarchy has an interpretation in terms of a hierarchy of
multifurcations in which space-time sheets suffer na-folding (note the analogy with period doubling
sequence): this multifurcation indeed occurs since each CP2 point corresponds in general to b(Ga)
M4
± points except at singular points where folding occurs. This hierarchy can be understood
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number theoretically. For An all Fermat polygons n = nF are possible. For D2n nF must be even.
For nF = 23F3, F3 = 2 × 257 both An and D2n are possible and would give λ ' 211. The higher
powers of λ would correspond approximately to nF = 23+11kF3. Of course also much more general
values of λ are possible and it is not clear why just the powers of λ ' 211 are possible unless one
accepts the period λ-folding argument. What makes the prediction very concrete is that the group
Ga associated with this covering acts in macroscopic and even astrophysical length scales. The
huge value na implies that either the cyclic group Ana

or dihedral group Dna
is in question. Planar

structures with discrete rotational symmetry, in particular Fermat polygons, suggest themselves
at the level of dark matter.

3.7.7 Summary

Although the model for the quantization of Planck constant is not completely free of ad hoc
elements, the situation is improved dramatically as compared to the earlier attempts to understand
how the large values of Planck constant could emerge. Most importantly, the model makes very
strong predictions consistent with experimental indications. What is also nice is that the celebrated
and mysterious McKay correspondence between ADE diagrams and finite subgroups of SU(2) finds
a direct physical interpretation and is connected directly with manifold-orbifold transition as a
general mechanism for the transition to non-perturbative phase. The model also suggests that the
inclusions associated with subgroups G ⊂ SL(2, C) could allow to understand the inclusions with
M : N > 4.

3.8 From naive formulas to conceptualization

I have spent a considerable amount of time on various sidetracks in attempts to understand what
the quantization of Planck constant does really mean. As usual, the understanding has emerged
by unconscious processing rather than by a direct attack.

3.8.1 Naive approach based on formulas

The whole business started from the naive generalization of various formulas for quantized energies
by replacing Planck constant with is scaled value. It seems that this approach does not lead to
wrong predictions, and is indeed fully supported by the basic applications of the theory. Mention
only the quantization of cyclotron energies crucial for the biological applications, the quantization
of hydrogen atom, etc... The necessity for conceptualization emerges when one asks what else the
theory predicts besides the simple zoomed up versions of various systems.

3.8.2 The geometric view about the quantization of Planck constant

After the naive approach based on simple substitutions came the attempt to conceptualize by
visualizing geometrically what dark atoms could look like, and the description in terms of N(Ga)×
N(Gb)-fold covering H → H/Ga ×Gb emerged.

Especially confusing was the question whether one should assign Planck constant to particles
or to their interactions or both. It is now clear that one can assign Planck constant to both the
”personal” field bodies assignable to particles and to their interactions (”relative” or interaction
field bodies), and that each interaction can correspond to both kinds of field bodies. Planck
constant for the relative field bodies depends on the quantum numbers of both particles as it does
in the case of gravitation. The Planck constant assignable to the particle’s ”personal” field body
makes possible generalizations like the notion of N-atom.

Each sheet of the ”personal” field body corresponds to one particular Compton length char-
acterizing one particular interaction and electromagnetic interaction would define the ordinary
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Compton length. The original picture was that topological condensation of CP2 type vacuum
extremal occurs at space-time sheet with size of Compton length identified usually with particle.
In the new picture this space-time sheet can be identified as electromagnetic field body.

Elementary particles have light-like partonic 3-surfaces as space-time correlates. If these 3-
surfaces are fully quantum critical, they belong to the intersection of all spaces H/Ga × Gb with
fixed quantization axes. This space is just the 4-D subspace M2 × S2 ⊂ M4 × CP2, where S2 is
geodesic sphere of CP2. Partonic 2-surfaces are in general non-critical and one can assign to them
a definite value of Planck constant.

There are two geodesic spheres in CP2. Which one should choose or are both possible?

1. For the homologically non-trivial one corresponding to cosmic strings, the isometry group
is SU(2) ⊂ SU(3). The homologically trivial one S2 corresponds to vacuum extremals and
has isometry group SO(3) ⊂ SU(3). The natural question is which one should choose. At
quantum criticality the value of Planck constant is undetermined. The vacuum extremal
would be a natural choice from the point of view of quantum criticality since in this case the
value of Planck constant does not matter at all and one would obtain a direct connection
with the vacuum degeneracy.

One can of course ask whether all surfaces M2 × Y 2, Y 2 Lagrangian sub-manifold of CP2

defining vacuum sectors of the theory should be allowed. The answer seems to be ”No”
since in the generic case SO(3) does not act as H-isometries of Y 2. If one allows these sub-
manifolds or even sub-manifolds of form M4×Y 2 to appear as intersection of fractally scaled
up variants, one must replace Cartan algebra as algebra associated with SO(3) subgroup of
canonical transformations of CP2 mapping Y 2 to itself (if this kind of algebra exists).

2. The choice of the homologically non-trivial geodesic sphere as a quantum critical sub-manifold
would conform with the previous guess that M : N = 4 corresponds to cosmic strings. It
is however questionable whether the ill-definedness of the Planck constant is consistent with
the non-vacuum extremal property of cosmic strings unless one assumes that for partonic
3-surfaces X3 ⊂ M2 × S2 the effective degrees of freedom reduce to mere topological ones.

3.8.3 Fractionization of quantum numbers and the hierarchy of Planck constants

The original generalization of the notion of imbedding space to a union of the factor spaces Ĥ/Ga×
Gb discussed in the section ”General ideas about dark matter” does not allow charge fractionization
whereas the covering spaces Ĥ×̂(Ga×Gb) allow a fractionization in a natural manner. Also hybrid
cases are obtained corresponding (M̂4×̂Ga)×(ĈP 2/Gb) and (M̂4/Ga)×(ĈP 2×̂Gb). The simplest
assumption is that Planck constant is a homomorphism from the lattice like structure of groups
with product of groups defined to be the group generated by the groups.

1. Ĥ/Ga ×Gb option

The safest and indeed natural assumption motivated by Jones inclusions is that physical states
in sector H/Ga ×Gb are Ga ×Gb invariant meaning a discrete analog of color confinement. This
alone excludes fractionization and actually implies just the opposite of it.

1. For states with vanishing fermionic quantum numbers Ga ×Gb invariance means that wave
functions live in the base space H/Ga × Gb. For instance, Lz would be a multiple of na

defining the order of maximal cyclic subgroup of Ga. Analogous conclusion would hold true
for color quantum numbers.

2. Just as in the case of ordinary spin fermionic quantum numbers (spin, electro-weak spin)
necessarily correspond to the covering group of the isometry group since a state with a half-
odd integer spin does not remain invariant under the subgroups of the rotation group. In
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particular, states with odd fermion number cannot be Ga ×Gb invariant. For even fermion
numbers it is possible to have many-particle states for which individual particles transform
non-trivially under orbital Ga × Gb if total Ga × Gb quantum numbers in spin like degrees
of freedom compensate for the orbital quantum numbers (for instance, total spin is multiple
of na). Hence the group algebra of Ga ×Gb would characterize the states in orbital degrees
of freedom as indeed assumed. The earlier picture would be correct apart from the lacking
assumption about overall Ga ×Gb invariance.

3. The construction of these states could be carried out just like the construction of ordinary
Ga ×Gb invariant states in H so that the mathematical treatment of the situation involves
no mystics elements. Since Ga ×Gb is actually assigned with a sector M4

± ×CP2 with fixed
quantization axes and preferred point of H, one has center of mass degrees of freedom for the
position of tip of M4

± and a preferred point of CP2. This gives new degrees of freedom and one
would have a rich spectrum of N-electrons, N-nucleons, N-atoms, etc.... behaving effectively
as elementary particles. For example, one interesting question is whether 2-electrons could
be interpreted as Cooper pairs of particular kind This would require either sz = 0, lz = 0 or
sz = 1, lz = mna − 1, m = 0, 1, 2... For instance, for na = 3 (the minimal value of na) one
could have sz = l, lz = 2 with Jz = 3. One can also ask whether some high spin nuclei could
correspond to N-nuclei.

4. This picture is quite predictive. For instance, in the case of gravitational interactions it would
mean that the spin angular momentum of an astrophysical system is a multiple of ”personal”
gravitational Planck constant GM2/v0. The value of v0 could be deduced from this condition
and is expected to be a negative power of 2. In the same manner the relative angular
momentum of planet-Sun system would be a multiple of GMm/v0 using the gravitational
Planck constant as a unit. This is a strong prediction but reduces to the Bohr quantization
rule for circular orbits.

2. Ĥ×̂(Ga ×Gb) option

For this option the units of orbital angular momentum and color hyper charge and isospin are
naturally scaled down by the factor ni. In the case of spin and electro-weak spin this kind of scaling
would require a covering group of Abelian Cartan group. Since the first homotopy group of SU(2)
vanishes there are no coverings of SU(2) in the ordinary sense of the word but quantum version
of SU(2) is an excellent candidate for the counterpart of the covering. Also quantum variants of
other Lie groups are highly suggestive on basis of ADE correspondence.

There does not seem to be any absolute need for assuming Ga × Gb singletness. If so, there
would be asymmetry between coverings and factor spaces bringing in mind confined and de-confined
phases. Since coverings resp. factor spaces are labelled by N11-valued lattice momenta resp. their
negatives, this asymmetry would be analogous to time reversal asymmetry. Note however that
all components of lattice momenta are either positive or negative and that this fits nicely with
the interpretation of p-adic integers as naturals and ”super-naturals”. An intriguing question is
whether there might be some connection with M-theory and its 4-D compactifications (dropping
reflection group one obtains 7-D lattice).

3. Implications of the new picture

This picture has several important implications.

1. There is a symmetry between CP2 and M4 so that for a given value of Planck constant one
obtains factor space with divisor group Ga × Gb and covering space with homotopy group
Ga × Gb. For large values of Planck constant the large Zn symmetry acts in M4 factor
resp. CP2 factor for these two options. Therefore the large Zn symmetry in M4 degrees of
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freedom, which can be challenged in some of the applications, could be replaced with large
Zn symmetry in CP2 degrees of freedom emerging rather naturally.

2. For a large value of Planck constant it is possible to obtain a relatively small dark matter
symmetry group in M4 factor and also the small genuinely 3-dimensional symmetry groups
(tedrahedral, octahedral, icosahedral groups) can act in M4 factor as symmetries of dark
matter. Hence the groups appearing as symmetries of molecular physics (aromatic rings,
DNA,...) could be identified as symmetries of dark electron pairs. These symmetries appear
also in longer length scales (snow flakes and even astrophysical structures). In earlier picture
one had to assume symmetry breaking at the level of visible matter. In particular, these
structures could give rise to fractal hierarchy of Planck constants coming as powers of 2. In
particular, h̄ = na × 211k is favored the model of EEG [M3].

3. The notion of N-atom generalizes. The original model predicted large electronic charges
suggesting instability plus large Zn symmetry in M4 degrees of freedom (identified as a
symmetry of field body). For instance, in the case of DNA double helix this kind of large
rotational symmetry is questionable. Same applies to astrophysical systems with a gigantic
value of gravitational Planck constant. The change of the roles of M4 and CP2 and charge
fractionization would resolve these problems. This would provide a support for the idea
that the electronic or protonic hot spots of catalyst and substrate correspond to fractional
charges summing up to a unit charge. This framework could provide a proper realization for
the original vision that symbolic level of dynamics and sex emerge already at the molecular
level with sequences of catalyst sites representing ”words” and their conjugates (opposite
molecular sexes).

3.9 The content of McKay correspondence in TGD framework

The possibility to assign Dynkin diagrams with the inclusions of II1 algebras is highly suggestive
concerning possible physical interpretations. The basic findings are following.

1. For β = M : N < 4 Dynkin diagrams code for the inclusions and correspond to simply laced
Lie algebras. SU(2), D2n+1, and E7 are excluded.

2. Extended ADE Dynkin diagrams coding for simply laced ADE Kac Moody algebras appear
at β = 4. Also SU(2) Kac Moody algebra appears.

3.9.1 Does TGD give rise to ADE hierarchy of gauge theories

The first question is whether any finite subgroup G ⊂ SU(2) acting in CP2 degrees of freedom could
somehow give rise to multiplets of the corresponding gauge group having interactions described by
a gauge theory. Orbifold picture suggests that might be the case.

1. The ”sheets” for the space-time sheet forming an N(G)-fold cover of M4
± are in one-one

correspondence with group G. This degeneracy gives rise to additional states and these states
correspond to the group algebra having basis given by group characters χ(g). One obtains
irreducible representations of G with degeneracies given by their dimensions. Altogether
one obtains N(G) states in this manner. In the case of A(n) the number of these states
is n + 1, the number of the states of the fundamental representation of SU(n + 1). In
the same manner, for D2n the number of these states equals to the number of states in
the fundamental representation of D2n. It seems that the rule is quite general. Thus these
representations would in the case of fermions give the states of the fundamental representation
of the corresponding gauge group.
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2. From fermion and antifermion states one can construct in a similar manner pairs giving
N(G)2 states defining in the case of A(n) n2 − 1-dimensional gauge boson multiplet plus
singlet. Also other groups must give boson multiplet plus possible other multiplets. For
instance, for D(4) the number of states is 64 and boson multiplet is 8-dimensional so that
many other spin 1 states result.

3. These findings give hopes that the orbifold multiplets could be modelled by a gauge theory
based on corresponding gauge group. What is nice that this huge hierarchy of gauge theories
is associated with dark matter so that the predictivity and falsifiability are not lost unlike in
M-theory.

3.9.2 Does one obtain also a hierarchy of conformal theories with ADE Kac Moody
symmetry?

Consider next the question Kac Moody interactions correspond to extended ADE diagrams are
possible.

1. In this case the notion of orbifold seems to break down since the symmetry related points
form a continuum SU(2) and space-time surface would become 6-dimensional if the M4

projection is 4-dimensional. If one takes space-time as something which emerges, one could
take this possibility half seriously. A more natural natural possibility is that M4 projection
is 2-dimensional geodesic sphere in which case one would have string like objects so that
conformal field theory with Kac-Moody algebra would emerge naturally.

2. The new degrees of freedom would define 2-dimensional continuum and it would not be
completely surprising if conformal field theory based on ADE Kac Moody algebra could de-
scribe the situation. One possibility is that these continua for different inclusions correspond
to SU(2) decompose to an N(G)-fold covers of S2/G orbifold so that also now groups G
would be involved with the Jones inclusions, which might provide a hint about how to con-
struct them. S2/G would play the role of stringy world sheet for the conformal field theory
in question. This effective re-arrangement of the topology S2 might be due to the fact that
conformal fields possess G symmetry which effectively groups points of S2 to n(G)-multiplets.
The localized representations of the Lie group corresponding to G would correspond to the
multiplets obtained from the representations of group algebra of G as in previous case.

3. The formula for the scaling factor of M4
± metric would give infinite scaling factor if one

identifies the scaling factor as maximal order of cyclic subgroup of SU(2). As a matter
fact there is no finite cyclic subgroup of this kind. The solution to the problem would be
identification of the scaling factor as the order of the maximal cyclic subgroup of G so that
the scaling factors would be same for the two situations related by McKay correspondence.

3.9.3 Generalization to M4
± degrees of freedom

One can ask whether the proposed picture generalizes formally also the case of M4
±.

1. In this case quantum groups would correspond to discrete subgroups G ⊂ SL(2, C). Kac
Moody group would correspond to G-Kac Moody algebra made local with respect to SL(2, C)
orbit in M4

± divided by G. These orbits are 3-dimensional hyperboloids Ha with a constant
value of light cone proper time a so that the division by G gives fundamental domain Ha/G
with a finite 3-volume.

2. The 4-dimensionality of space-time would require 1-dimensional CP2 projection. Vacuum ex-
tremals of Kähler action would be in question. Robertson-Walker metric have 1-dimensional
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CP2 projection and carry non-vanishing density of gravitational mass so that in this sense
the theory would be non-trivial. G would label different lattice like cosmologies defined by
tesselations with fundamental domain Ha/G.

3. The multiplets of G would correspond to collections of points, one from each cells of the
lattice like structure. Macroscopic quantum coherence would be realized in cosmological
scales. If one takes seriously the vision about the role of short distance p-adic physics as a
generator of long range correlations of the real physics reflected as p-adic fractality, this idea
does not look so weird anymore.

Complexified modular group SL(2, Z + iZ) and its subgroups are interesting as far as p-
adicization is considered. The principal congruence subgroups Γ(N) of SL(2, Z + iZ) which
are unit matrices modulo N define normal subgroups of the complex modular group and are
especially interesting candidates for groups G ⊂ SL(2, C). The group Γ(N = pk) labelling
fundamental domains of the tesselation Ha/Γ(N = pk) defines a mathematically attractive
candidate for a point set associated with the intersections of p-adic space-time sheets with
real space-time sheets. Also analogous groups for algebraic extensions of Z are interesting.

The simplest discrete subgroup of SL(2,C) with infinite number of elements would corre-
sponds to powers of boost to single direction and correspond at the non-relativistic limit
to multiples of basic velocity. This could also give rise to quantization of cosmic reces-
sion velocities. There is evidence for the quantization of cosmic recession velocities (for
a model in which single object produces quantized redshifts see [D4]) and it is interesting
to see whether they could be interpreted in terms of the lattice like periodicity in cosmo-
logical length scales implied by the effective reduction of physics to M4

+/Gn. In [74] the
values z = 2.63, 3.45, 4.47 of cosmic red shift are listed. These correspond to recession ve-
locities v = (z2 − 1)/(z2 + 1) are (0.75,0.85,0.90). The corresponding hyperbolic angles are
given by η = acosh(1/(1 − v2)) and the values of η are (1.46, 1.92, 2.39). The differences
η(2)− η(1) = .466 and η(3)− η(2) = .467 are same within experimental uncertainties. One
has however η(n)/(η(2)− η(1)) = (3.13, 4.13, 5.13) instead of (3, 4, 5). A possible interpreta-
tion is in terms of the velocity of the observer with respect to the frame in which quantization
of η happens.

3.9.4 Quantitative support for the interpretation

A more detailed analysis of the situation gives support for the proposed vision.

1. A given value of quantum group deformation parameter q = exp(iπ/n) makes sense for
any Lie algebra but now a preferred Lie-algebra is assigned to a given value of quantum
deformation parameter. At the limit β = 4 when quantum deformation parameter becomes
trivial, the gauge symmetry is replaced by Kac Moody symmetry.

2. The prediction is that Kac-Moody central extension parameter should vanish for β < 4.
There is an intriguing relationship to formula for the quantum phase qKM associated with
(possibly trivial) Kac-Moody central extension and the phase defined by ADE diagram

qKM = exp(iφ) , φ1 = π
k+hv ,

qJones = exp(iφ) , φ = π
h

In the first formula sum of Kac-Moody central extension parameter k and dual Coxeter
number hv appears whereas Coxeter number h appears in the second formula. Internal
consistency requires
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k + hv = h . (5)

It is easy see that the dual Coxeter number hv and Coxeter number h given by h = (dim(g)−
r)/r, where r is the dimension of Cartan algebra of g, are identical for ADE algebras so that
the Kac-Moody central extension parameter k must indeed vanish. For SO(2n + 1), Sp(n),
G2, and F4 the condition h = hv does not hold true but one has h(n) = 2n = hv + 1 for
SO(2n + 1), h(n) = 2n = 2(hv − 1) for Sp(n), h = 6 = hv + 2 for G2, and h = 12 = hv + 3
for F4.

What is intriguing that G2, which seems to play a fundamental role in the dual formulation
of quantum TGD based on the identification of space-times as surfaces in hyper-octonionic
space M8 [E2] is not allowed. As a matter fact, G2 → SU(3) reduction occurs also in the
dual formulation based on G2/SU(3) coset model and is required by the separate conser-
vation of quark and lepton numbers predicted by TGD. ADE groups would be associated
with the interaction between space-time sheets rather than entire dynamics and need not
have anything to do with the Kac-Moody algebra associated with color and electro-weak
interactions appearing in the construction of physical states [F2].

3. There seems to be a concrete connection with conformal field theories. This connection
would allow to understand the emergence of quantum groups appearing naturally in these
theories. Quite generally, the conformal central extension parameter for unitary Virasoro
representations resulting by Sugawara construction from Kac Moody representations satisfies
either of the conditions

c ≥ kdim(g)
k + hv

+ 1 ,

c =
kdim(g)
k + hv

+ 1− 6
(h− 1)h

. (6)

For k = 0, which should be interesting for β < 4, the second formula reduces to

c = 1− 6
(h− 1)h

. (7)

The formula gives the values of c for minimal conformal field theories with finite number of
conformal fields and real conformal weights. Indeed, h in this formula seems to correspond
to the same h as appearing in the expression β ≡M : N = 4cos2(π/h) .

β = 3, h = 6 corresponds to three-state Potts model with c = 4/5 which should thus have
a gauge group for which Coxeter number is 6: the group should be either SU(6) or SO(8).
Two-state Potts model, that is Ising model with β = 2, h = 4 would correspond to c = 1/2
and to a gauge group SU(4) or SO(4). For h = 3 (”one-state Potts model”) with group
SU(3) one would have c = 0 and vanishing conformal anomaly so that conformal degrees of
freedom would become pure gauge degrees of freedom.

These observations give support for the following picture.

1. Quite generally, the number of states of the generalized β-state Potts model has an interpre-
tation as the dimension β = M : N of M as N -module. Besides the models with integer
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number of states there is an infinite number of models for which the number of states is not
an integer. The conditions c ≤ 1 guaranteing real conformal weights and β ≤ 4 correspond
to each other for these models.

2. β > 4 Potts models would be formally obtained by allowing h to be imaginary in the defining
formula for M : N . In this case c would be however complex so that the theory would not
be unitary.

3. For minimal models with (β < 4, c < 1) Kac-Moody central extension parameter is vanishing
so that Kac Moody algebra indeed acts like gauge symmetries and gauge symmetries would be
in question. (β = 4, c = 1) would define a ”four-state Potts model” with infinite-dimensional
unitary group acting as a gauge group. On the other hand, the appearance of extended ADE
Dynkin diagrams suggests strongly that this limit is not realized but that β = M : N = 4
corresponds to k = 1 conformal field theory allowing Kac Moody symmetries for any ADE
group, which as simply-laced groups allows vertex operator construction. The appearance of
kdim(g)/(k +g) in the more general formula would thus code the Kac Moody group whereas
for β < 4 ADE diagram codes for the preferred gauge group characterizing the minimal CFT.

4. The possibility that any ADE gauge group or Kac-Moody group can characterize the inter-
action between space-time sheets conforms with the idea about Universe as a Topological
Quantum Computer able to simulate any conceivable quantum dynamics. Of course, one
cannot exclude the possibility that only electro-weak and color symmetries are realized in
this manner.

3.9.5 Ga as a symmetry group of magnetic body and McKay correspondence

The group Ga ⊂ SU(2) ⊂ SL(2, C) means exact rotational symmetry realized in terms of M4
±

coverings of CP2. The 5 and 6-cycles in biochemistry (sugars, DNA,....) are excellent candidates
for these symmetries. For very large values of Planck constant, say for the values h̄(M4

±)/h̄(CP2) =
GMm/v0 = (na/nb)h̄0, v0 = 2−11, required by the model for planetary orbits as Bohr orbits [D6],
Ga is huge and corresponds to either Zna or in the case of even value of na to the group generated
by Zn and reflection acting on plane and containing 2na elements.

The notion of magnetic body seems to provide the only conceivable candidate for a geometric
object possessing Ga as symmetries. In the first approximation the magnetic field associated with
a dark matter system is expected to be modellable as a dipole field having rotational symmetry
around the dipole axis. Topological quantization means that this field decomposes into flux tube
like structures related by the rotations of Zn or D2n. Dark particles would have wave functions
delocalized to this set of these flux quanta and span group algebra of Ga. Magnetic flux quanta are
indeed assumed to mediate gravitational interactions in the TGD based model for the quantization
of radii of planetary orbits and this explains the dependence of h̄gr on the masses of planet and
central object [D6].

For the model of dark matter hierarchy appearing in the model of living matter one has na =
211k, k = 1, 2, 3, .., 7 for cyclotron time scales below life cycle for a magnetic field Bd = .2 Gauss at
k = 4 level of hierarchy (the field strength is fixed by the model for the effects of ELF em fields on
vertebrate brain at harmonics of cyclotron frequencies of biologically important ions [M3]). Note
that Bd scales as 2−11k from the requirement that cyclotron energy is constant.

ADE correspondence between subgroups of SU(2) and Lie groups in ADE hierarchy encourages
to consider the possibility that TGD could mimic ADE hierarchy of gauge theories. In the case of
Ga this would mean that many fermion states constructed from single fermion states, which are
in one-one correspondence with the elements of Ga group algebra, would define multiplets of the
gauge group corresponding to the Dynkin diagram characterizing Ga: for instance, SU(na) in the
case of Zna . Fermion multiplet would contain na states and gauge boson multiplet n2

a − 1 states.

45



This would provide enormous information processing capacity since for na = 211k fermion multiplet
would code exactly 11k bits of information. Magnetic body could represent binary information
using the many-particle states belonging to the representations of say SU(na) at its flux tubes.

3.10 Jones inclusions, the large N limit of SU(N) gauge theories and
AdS/CFT correspondence

The framework based on Jones inclusions has an obvious resemblance with larger N limit of SU(N)
gauge theories and also with the celebrated AdS/CFT correspondence [69] so that a more detailed
comparison is in order.

3.10.1 Large N limit of gauge theories and series of Jones inclusions

The large N limit of SU(N) gauge field theories has as definite resemblance with the series of
Jones inclusions with the integer n ≥ 3 characterizing the quantum phase q = exp(iπ/n) and the
order of the maximal cyclic subgroup of the subgroup of SU(2) defining the inclusion. Recall that
all ADE groups except D2n+1 and E7 are allowed (SU(2) is excluded since it would correspond to
n = 2).

The limiting procedure keeps the value of g2N fixed. Rather remarkably, this is equivalent
with keeping αN constant but assuming h̄ to scale as n = N . Thus the quantization of Planck
constants would provide a physical laboratory for the testing of large N limit.

The observation suggesting a description of YM theories in terms of closed strings is that
Feynman diagrams can be interpreted as being imbedded at closed 2-surfaces of minimal genus
guaranteing that the internal lines meet except in vertices. The contribution of genus g diagrams is
proportional to Ng−1 at the large N limit. The interpretation in terms of closed partonic 2-surfaces
is highly suggestive and the Ng−1 should come from the multiple covering property of CP2 by N
M4-points (or vice versa) with the finite subgroup of G ⊂ SU(2) defining the Jones inclusion and
acting as symmetries of the surface.

3.10.2 Analogy between stacks of branes and multiple coverings of M4 and CP2

An important aspect of AdS/CFT dualities is a prediction of an infinite hierarchy of gauge groups,
which as such is as interesting as the claimed dualities. The prediction relies on the notion Dp-
branes. Dp-branes are p + 1-dimensional surfaces of the target space at which the ends of open
strings can end. In the simplest situation one considers N parallel p-branes at the limit when the
distances between branes characterized by an expectation value of Higgs fields approach zero to
obtain what is called N-stack of branes. There are N2 different strings connecting the branes and
the heuristic idea is that they correspond to gauge bosons of U(N) gauge theory. Note that the
requirement that AdS/CFT dualities exist forces the introduction of branes and the optimistic
interpretation is that a non-perturbative effect of still unknown M-theory is in question. In the
limit of an ideal stack one assumes that U(N) gauge theory at the brane representing the stack is
obtained. The branes must also carry a p-form defining gauge potential for a closed p + 1-form.
This Ramond charge is quantized and its value equals to N .

Consider now the group Ga×Gb ⊂ SL(2, C)×SU(2) ⊂ SU(3) defining double Jones inclusion
and implying the scalings h̄(M4) → n(Gb)h̄(M4) and h̄(CP2) → n(Ga)h̄(CP2). These space-time
surfaces define n(Ga)-fold multiple coverings of CP2 and n(Gb)-fold multiple coverings of M4. In
CP2 degrees of freedom the collection of Gb-related partonic 2-surfaces (/3-surfaces/4-surfaces) is
highly analogous to the stack of branes. In M4 degrees of freedom the stack of copies of surface
typically correspond to along a circle (An, D2n or at vertices of tedrahedron or isosahedron.

In TGD framework the interpretation strings are not needed to define gauge fields. The group
algebra of G realized as discrete plane waves at G-orbit gives rise to representations of G. The
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hypothesis supported by few examples is that these additional degrees of freedom allow to construct
multiplets of the gauge group assignable to the ADE diagram characterizing the inclusion.

3.10.3 AdS/CFT duality

AdS/CFT duality is a further aspect of the brane construction. The dual description of the
situation is in terms of a string theory in a background in which N -brane acts as a macroscopic
object giving rise to a black-hole like object in (say) 10-dimensional target space. This background
has the form AdS5×X5, where AdS5 is 5-dimensional hyperboloid of M6 and thus allows SO(4, 2)
as isometries. X5 is compact constant curvature space. S5 gives rise to N = 4 SUSY in M4 with
M4 interpreted as a brane. The first support for the dualities comes from the symmetries: for
instance, the N = 4 super-symmetrized isometries of AdS5 × S5 are same as the symmetries of
4-dimensional N = 4 SUSY for p = 3 branes. N-branes can be used as models for black holes in
target space and black-hole entropy can be calculated using either target space picture or conformal
field theory at brane and the results turn out be the same.

Does the TGD equivalent of this duality exists in some sense?

1. As far as partonic 2-surfaces identified as 1-branes are considered, conformal field theory
description is trivially true. In TGD framework the analog of Ramond charges are the integers
na and nb characterizing the multipliticies of the maximal Abelian subgroups having clear
topological meaning. This conforms with the observation that large N limit of the gauge
field theories can be formulated in terms of closed surfaces at which the Feynman diagrams
are imbedded without self crossings. It seems that the integers na and nb characterizing the
Jones inclusion naturally take the role of Ramond charge: this does not of course exclude
the possibility they can be expressed as fluxes at space-time level as will be indeed found.

2. Conformal field theory description can be generalized in the sense that one replaces the
n(Ga) × n(Gb) partonic surfaces with single one and describes the new states as primary
fields arranged into representations of the ADE group in question. This would mean that
the standard model gauge group extends by additional factor which is however non-trivially
related to it.

3. If one can accept the idea that the conformal field theory description for partons gives rise
to M4 gauge theory as an approximate description, it is not too difficult to imagine that also
ADE hierarchy of gauge theories results as a description of the exotic states. One can say
that CFT in p-brane is replaced now with CFT on partonic 2-surface (1-brane) analogous to
a closed string.

4. In the minimal interpretation there is no need to add strings connecting the branches of
the double covering of the partonic 2-surface whose function is essentially that of making
possible gauge bosons as fermion anti-fermion pairs. One could of course imagine gauge
fluxes as counterparts of strings but just the fact that G-invariance dictates the configurations
completely forces to question this kind of dynamics.

5. There is no reason to expect the emergence of N = 4 super-symmetric field theory in M4 as
in the case of super-string models. The reasons should be already obvious: super-conformal
generators G anticommute to L0 proportional to mass squared rather than four-momentum
and the spectrum extended by Ga ×Gb degeneracy contains more states.

One can of course ask whether higher values of p could make sense in TGD framework.

1. It seems that the light-like orbits of the partonic 2-surfaces defining 2-branes do not bring in
anything new since the generalized conformal invariance makes it possible the restriction to
a 2-dimensional cross section of the light like causal determinant.
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2. The idea of regarding space-time surface X4 as a 3-brane in H in which some kind of con-
formal field theory is defined is in conflict with the basis ideas of TGD. The role of X4

interior is to provide classical correlates for quantum dynamics to make possible quantum
measurement theory and also introduce correlations between partonic 2-surfaces even in the
case that partonic conformal dynamics reduces to a topological string theory. It is quantum
classical correspondence which corresponds to this duality.

3.10.4 What is the counterpart of the Ramond charge in TGD?

The condition that there exist a p-form defining p+1-gauge field with p-charge equal to na or nb is
a rather stringent additional condition also in TGD framework. For n < ∞ this kind of charge is
defined by Jones inclusion and represented topologically so that Ramond charge is not needed in
n < ∞ case. By the earlier arguments one must however be able to assign integers na and nb also
to G = SU(2) inclusions with Kac-Moody algebra characterized by an extended ADE diagram
with the phases qi = exp(iπ/ni) relating to the monodromy of the theory. Since Jones inclusion
does not define in this case the value of n < ∞ in any obvious manner, the counterpart of the
Ramond charge is needed.

1. For partonic 2-surfaces ordinary gauge potential would define this form and the condition
would state that magnetic flux equals to n so that the anyonic partonic two-surfaces would be
homologically non-trivial in CP2 degrees of freedom. String ends would define basic example
of this situation. This would be the case also in M4

+ degrees of freedom: the partonic 2-surface
would essentially wind na times around the tip of δM4

± and the gauge field in question would
be monopole magnetic field in δM4

±. This kind of situation need not correspond to anything
cosmological since future and past light-cones appear in the basic definition of the scattering
amplitudes.

2. For p = 3 Chern-Simons action for the induced CP2 Kähler form associated with the partonic
2-surface indeed defines this kind of charge. Ramond charge should be simply N . CP2 type
extremals or their small deformations satisfy this constraint and are indeed very natural in
elementary particle physics context but too restrictive in a more general context.

Note that the light-like orbits of non-deformed CP2 extremals have light-like random curve as
an M4 projection and the conformal symmetries of M4 obviously respect light-likeness property.
Hence SO(4, 2) symmetry characterizing AdS5/CFT is not excluded but would be broken by p-
adic thermodynamics and by TGD based Higgs mechanism involving the identification of inertial
momentum as average value of non-conserved gravitational momentum parallel to the light-like
zitterbewegung orbit.

3.10.5 Can one speak about black hole like structures in TGD framework?

For AdS/CFT correspondence there is also a dynamical coupling to the target space metric. The
coupling to H-metric is present also now since the overall scalings of the M4 resp. CP2 metrics
by nb resp. by na are involved. This applies to when multiple covering is used explicitly. In the
description in which one replaces the multiple covering by ordinary M4×CP2, the metric suffers a
genuine change and something analogous to the black-hole type metrics encountered in AsS/CFT
correspondence might be encountered.

Consider as an example an na-fold covering of CP2 points by M4 points (ADE diagram Ana−1).
The n-fold covering means only n2π rotation for the phase angle ψ of CP2 complex coordinate
leads to the original point. The replacement ψ → ψ/na gives rise to what would look like ordinary
M4 × CP2 but with a modified CP2 metric. The metric components containing ψ as index are
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scaled down by 1/na or 1/n2
a. Notice that Ψ effectively disappears from the dynamics at the large

na limit.
If one uses an effective description in which covering is eliminated the metric is indeed affected

at the level of imbedding space black hole like structures at the level of dynamic space might make
emerge also in TGD framework at large N limit since the masses of the objects in question become
large and CP2 metric is scaled by N so that CP2 has very large size at this limit. This need
not lead to any inconsistencies if these phases are interpreted as dark matter. At the elementary
particle level p-adic thermodynamics predicts that p-adic entropy is proportional to thermal mass
squared which implies elementary particle black-hole analogy.

3.10.6 Other dualities

Also quantum classical correspondence defines in a loose sense a duality justifying the basic as-
sumptions of quantum measurement theory. The light-like orbits of 2-D partons are characterized
by a generalization of ordinary 2-D conformal invariance so that CFT part of the duality would be
very natural. The dynamical target space would be replaced with the space-time surface X4 with
a dynamical metric providing classical correlates for the quantum dynamics at partonic 2-surfaces.
The duality in this sense cannot be however exact since classical dynamics cannot fully represent
quantum dynamics.

Classical description is not expected to be unique. The basic condition on space-time surfaces
assignable to a given configuration of partonic 2-surfaces associated with the surface X3

V defining
S-matrix element are posed by quantum classical correspondence. Both hyper-quaternionic and
co-hyper-quaternionic space-time surfaces are acceptable and this would define a fundamental
duality.

A concrete example about this HQ-coHQ duality would be the equivalence of space-time de-
scriptions using 4-D CP2 type extremals and 4-D string like objects connecting them. If one
restricts to CP2 type extremals and string like objects of from X2 × Y 2, the target space reduces
effectively to M4 and the dynamical degrees of freedom correspond in both cases to transversal M4

degrees of freedom. Note that for CP2 type extremals the conditions stating that random light-
likeness of the M4 projection of the CP2 type extremal are equivalent to Virasoro conditions. CP2

type extremals could be identified as co-HQ surfaces whereas stringlike objects would correspond
to HQ aspect of the duality.

HQ-coHQ provides dual classical descriptions of same phenomena. Particle massivation would
be a basic example. Higgs mechanism in a gauge theory description based on CP2 type extremals
would rely on zitterbewegung implying that the average value of gravitational mass identified
as inertial mass is non-vanishing and is discussed already. Higgs field would be assigned to the
wormhole contacts. The dual description for the massivation would be in terms of string tension
and mass squared would be proportional to the distance between G-related points of CP2.

These observations would suggest that also a super-conformal algebra containing SL(2, R) ×
SU(2)L×U(1) or its compact version exists and corresponds to a trivial inclusion. This is indeed the
case [68]. The so called large N = 4 super-conformal algebra contains energy momentum current,
2+2 super generators G, SU(2)×SU(2)×U(1) Kac-Moody algebra (both SU(2) and SL(2,R) could
be interpreted as acting on M4 spin degrees of freedom, and 2 spin 1/2 fermionic currents having
interpretation in terms of right handed neutrinos corresponding to two H-chiralities. Interestingly,
the scalar generator is now missing.

3.11 Only the quantum variants of M4 and M8 emerge from local hyper-
finite II1 factors

Super-symmetry suggests that the representations of CH Clifford algebra M as N module M/N
should have bosonic counterpart in the sense that the coordinate for M8 representable as a par-
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ticular M2(Q) element should have quantum counterpart. Same would apply to M4 coordinate
representable as M2(C) element. Quantum matrix representation of M/N as SLq(2, F ) matrix,
F = C,H is the natural candidate for this representation. As a matter fact, this guess is not quite
correct. It is the interpretation of M2(C) as a quaternionic quantum algebra whose generalization
to the octonionic quantum algebra works.

Quantum variants of MD exist for all dimensions but only spaces M4 and M8 and their linear
sub-spaces emerge from hyper-finite factors of type II1. This is due to the non-associativity of
the octonionic representation of the gamma matrices making it impossible to absorb the powers of
the octonionic coordinate to the Clifford algebra element so that the local algebra character would
disappear. Even more: quantum coordinates for these spaces are commutative operators so that
their spectra define ordinary M4 and M8 which are thus already quantal concepts.

The commutation relations for M2,q(C) matrices

(
a b
c d

)
,

(8)

read as

ab = qba , ac = qac , bd = qdb , cd = qdc ,
[ad, da] = (q − q−1)bc , bc = cb .

(9)

These relations can be extended by postulating complex conjugates of these relations for complex
conjugates a†, b†, c†, d† plus the following non-vanishing commutators of type [x, y†]:

[a, a†] = [b, b†] = [c, c†] = [d, d†] = 1 . (10)

The matrices representing M4 point must be expressible as sums of Pauli spin matrices. This can
be represented as following conditions on physical states

O|phys〉 = 0 ,

O ∈ {a− a†, d− d†, b− c†, c− b†} . (11)

For instance, the first two conditions follow from the reality of Pauli sigma matrices σx, σy, σz.
These conditions are compatible only if the operators O commute. This is the case and means
also that the operators representing M4 coordinates commute and it is possible to define quantum
states for which M4 coordinates have well-defined eigenvalues so that ordinary M4 emerges purely
quantally from quaternions whose real coefficients are made non-Hermitian operators to obtain
operator complexificiation of quaternions. Also the quantum states in which M4 coordinates are
emerge naturally.

M2,q(C) matrices define the quantum analog of C4 and one can wonder whether other linear
sub-spaces can be defined consistently or whether M4

q and thus Minkowski signature is unique.
This seems to be the case. For instance, the replacement a− a → a + a making also time variable
Euclidian is impossible since [a + a, d − d] = 2(q − q−1)bc does not vanish. The observation that
M4 coordinates can be regarded as eigenvalues of commuting observables proves that quantum
M4
± and its orbifold description are equivalent.
What about M8: does it have analogous description? The representation of M4 point as M2(C)

matrix can be interpreted a combination of 4-D gamma matrices defining hyper-quaternionic units.
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Hyper-octonionic units indeed have anticommutation relations of gamma matrices of M8 and
would give classical representation of M8. The counterpart of M2,q(C) would thus be obtained by
replacing the coefficients of hyper-octonionic units with operators satisfying the generalization of
M2,q(C) commutation relations. One should identify the reality conditions and find whether they
are mutually consistent.

Introduce the coefficients of E4 gamma matrices having interpretation as quaterionic units as

a0 = ix(a + d) , a3 = x(a− d) ,
a1 = x(b + c) , a2 = x(ib− c) ,
x = 1√

2
,

and write the commutations relations for them to see how the generalization should be performed.
The selections of commutative and quaternionic sub-algebras of octonion space are fundamental

for TGD and quantum octonionic algebra should reflect these selections in its structure. In the
case of quaternions the selection of commutative sub-algebra implies the breaking of 4-D Lorentz
symmetry. In the case of octonions the selection of quaternion sub-algebra should induce the
breaking of 8-D Lorentz symmetry. Quaternionic sub-algebra obeys the commutations of Mq(2, C)
whereas the coefficients in in the complement commute mutually and quantum commute with the
complex sub-algebra. This nails down the commutation relations completely:

[a0, a3] = −i(q − q−1)(a2
1 + a2

2) ,

[ai, aj ] = 0 , i, j 6= 0, 3 ,

a0ai = qaia0 , i 6= 0, 3 ,

a3ai = qaia3 , i 6= 0, 3 . (12)

Checking that M8 indeed corresponds to commutative subspace defined by the eigenvalues of
operators is straightforward.

The argument generalizes easily to other dimensions D ≥ 4 but now quaternionic and octonionic
units must be replaced by gamma matrices and an explicit matrix representation can be introduced.
These gamma matrices can be included as a tensor factor to the infinite-dimensional Clifford
algebra so that the local Clifford algebra reduces to a mere Clifford algebra. The units of quantum
octonions which are just ordinary octonion units do not however allow matrix representation so
that this reduction is not possible and imbedding space and space-time indeed emerge genuinely.
The non-associativity of octonions would determine the laws of physics in TGD Universe!

Thus the special role of classical number fields and uniqueness of space-time and imbedding
space dimensions becomes really manifest only when a quantal deformation of the quaternionic
and octonionic matrix algebras is performed. It is possible to construct the quantal variants of
the coset spaces M4 × E4/Ga × Gb by simply posing restrictions on the of eigen states of the
commuting coordinate operators. Also the quantum variants of the space-time surface and quite
generally, manifolds obtained from linear spaces by geometric constructions become possible.

4 Has dark matter been observed?

In this section two examples about anomalies perhaps having interpretation in terms of quantized
Planck constant are discussed.

4.1 Optical rotation of a laser beam in a magnetic field

The group of G. Cantatore has reported an optical rotation of a laser beam in a magnetic field
[83]. The experimental arrangement involves a magnetic field of strength B = 5 Tesla. Laser beam
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travels 22000 times forth and back in a direction orthogonal to the magnetic field travelling 1 m
during each pass through the magnet. The wavelength of the laser light is 1064 nm. A rotation of
(3.9± .5)× 10−12 rad/pass is observed.

A possible interpretation for the rotation would be that the component of photon having
polarization parallel to the magnetic field mixes with QCD axion, one of the many candidates for
dark matter. The mass of the axion would be about 1 meV. Mixing would imply a reduction of
the corresponding polarization component and thus in the generic case induce a rotation of the
polarization direction. Note that the laser beam could partially transform to axions, travel through
a non-transparent wall, and appear again as ordinary photons.

The disturbing finding is that the rate for the rotation is by a factor 2.8 × 104 higher than
predicted. This would have catastrophic astrophysical implications since stars would rapidly lose
their energy via axion radiation.

4.1.1 Could the optical rotation be caused by a pion of a scaled down copy of ordinary
QCD

The motivation for introducing axion was the large CP breaking predicted by the standard QCD.
No experimental evidence has been found has been found for this breaking. The idea is to intro-
duce a new broken U(1) gauge symmetry such that is arranged to cancel the CP violating terms
predicted by QCD. Because axions interact very weakly with the ordinary matter they have been
also identified as candidates for dark matter particles.

In TGD framework there is special reason to expect large CP violation analogous to that in
QCD although one cannot completely exclude it. Axions are however definitely excluded. TGD
predicts a hierarchy of scaled up variants of QCD and entire standard model plus their dark
variants corresponding to some preferred p-adic length scales, and these scaled up variants play
a key role in TGD based view about nuclear strong force [F8, F9], in the explanation of the
anomalous production of e+e− pairs in heavy nucleus collisions near Coulomb wall [F7], high Tc

superconductivity [J1, J2, J3] and also in the TGD based model of living matter [M3]. Therefore
a natural question is whether the particle in question could be a pion of some scaled down variant
of QCD having similar coupling to electromagnetic field. Also dark variants of this pion could be
considered.

What raises optimism is that the Compton length of the scaled down quarks is of the same
order as cyclotron wavelength of electron in the magnetic field in question. For the ordinary value
of Planck constant this option however predicts quite too high mixing rate. This suggests that
dark matter has been indeed observed in the sense that the pion corresponds to a large value of
Planck constant. Here the encouraging observation is that the ratio λc/λ of wavelength of cyclotron
photon and laser photon is n = 211, which corresponds to the lowest level of the biological dark
matter hierarchy with levels characterized the value h̄(M4

±) = 211kh̄0, k = 1, 2, ....
The most plausible model is following.

1. Suppose that the photon transforms first to a dark cyclotron photon associated with electron
at the lowest n = 211 level of the biological dark matter hierarchy. Suppose that the coupling
of laser photon to dark photon can be modelled as a coefficient of the usual amplitude apart
from a numerical factor of order one equal to αem(n) ∝ 1/n.

2. Suppose that the coupling gπNN for the scaled down hadrons is proportional to α4
s(n) ∝ 1/n4

as suggested by a simple model for what happens for the nucleon and pion at quark level in
the emission of pion.

Under these assumptions one can understand why only an exotic pion with mass of 1 meV couples
to laser photons with wavelength λ = 1 µm in magnetic field B = 5 Tesla. The general prediction
is that λc/λ must correspond to preferred values of n characterizing Fermat polygons constructible
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using only ruler and compass, and that the rate for the rotation of polarization depends on photon
frequency and magnetic field strength in a manner not explained by the model based on the
photon-axion mixing.

4.1.2 Scaled up variant of PCAC

Consider first briefly the scaled up variant of partially conserved axial current hypothesis (PCAC).

1. The mass of the particle would be around 1 meV. If a scaled down ordinary pion is in question,
the mass ratio mπ/mA ' 140× 109 ∼ 237 suggests that the space-time sheet associated with
gluons of this QCD is related by p-adic scale in question corresponds to k = 107+2×37 = 181,
which is prime and corresponds to p-adic length scale L(181) = .327 mm. The predicted pion
mass from exact scaling would be 1.1 meV. This pion does not couple to ordinary quarks
and therefore this coupling does not affect astrophysics at the level of visible matter. The
parameter ΛQCD,181 would be obtained by the scaling ΛQCD(181) = 2−37ΛQCD(107).

2. The interaction of pion and photons is fixed completely by the anomaly of axial current [66]

〈0|Aj
µ(x)|πk〉 = iδjkpµfπexp−ip·x . (13)

Here fπ ' 93 MeV characterizes the matrix element of axial current between vacuum and
single-pion state and thus the decay rate of pion.

The form of the interaction is exactly the same as in the case of axion and given by the
interaction Lagrangian

L = kemπF ∧ F ,

kem =
e2

32π2fπ
. (14)

The detailed arguments leading to the expression for kem can be found in [66].

3. Axial current anomaly implies that the divergence of the axial current is proportional to the
pion field. Writing the most general form for the matrix element of the axial current between
nucleon states, this gives a relationship between pion-nucleon coupling gπNN and pion decay
rate fπ:

gA(0)
fπ

=
gπNN

mN
,

gA(0) =
GA

GV
. (15)

One has mN = .94 GeV, g2
πNN/4π = 14.6. gA(0) = GA/GV = 1.22 is the ratio of axial

and vectorial weak couplings for the fermion at zero momentum transfer. Te relationship
follows from the conservation of axial current between nucleon and states that the coefficient
of the term qµuγ5u in the axial current matrix element between two nucleon states has a
pole corresponding to the exchange of approximately massless pion. This formula generalizes
trivially for the scaled up variants of QCD. The photon-axion mixing rate is proportional to
1/mN , where mN is the mass of the exotic nucleon.
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4.1.3 Comparison with the axion model

Let us compare the predictions of this model with the predictions of the axion model.

1. Axion-photon interaction Lagrangian has exactly the same form as π0γγ interaction La-
grangian. The parameter fa for the axion satisfies the condition

fa ' Λ2
QCD

ma
. (16)

Here one has ma ' 1 meV and ΛQCD ' .2 GeV.

2. From the fact that the rate is by a factor r = 2.8 × 104 higher than the rate expected for
QCD axion with mass ma ' 1 meV one can deduce that the mass scale of the exotic u and
d quarks. The condition that the two decay rates differ by the factor R = 2.8× 104 reads as

gA,e(0)
gπeNeNe

×mNe =
1√
R

Λ2
QCD

ma
, (17)

where the right hand side refers to the exotic nucleon and pion. The parameter gA,e can be
assumed to be near to one.

Suppose first that exotic pion is not dark and that gπeNeNe = gπNN holds true. The small
mass of axion implies that the right hand side is about 2.4× 105 GeV so that mNe should be
by a factor about 3.2× 106 ∼ 222 larger than mN and corresponding quarks would roughly
correspond to k ∼ 73. This is in in contradiction with what one would expect. Basically the
large decay constant of exotic pion ∝ 1/mN is in conflict with the very small decay constant
of axion proportional to ∝ ma/Λ2.

Consider now various options which could cure the problem.
Option I: The first dark matter option option is that one has h̄ = nh̄0 and gπeNeNe is by a

factor 1/nk ' 2−60 ' 10−18 smaller than gπNN . The factor comes from the overall reduction
factor 3.2×106 ∼ 222 of 1/fπ and from the fact that nucleon mass scale should be reduced roughly
by a factor ∼ 2−37 (just like pion mass scale).

This could be understood if the pion exchange involves the emission of k virtual gluons implying
gπeNeNe ∝ αk

s ∝ 1/nk. One virtual gluon would decay to pion and two additional exchanges are
necessary since all three valence quarks of nucleon must interact: hence k = 3 is the minimal
option. One can also argue that the quarks resulting in the decay of virtual gluon must exchange
at least one gluon to become a pion. This would give 1/n4 behavior giving the estimate n = 215

assuming gπeNeNe = gα4
s, with g having no dependence on αs. The higher powers of αs in the

expansion of gπNN are important for ordinary hadrons physics but small for its dark variants so
that the estimate is just a rough order of magnitude estimate if even that.

Option II: One can consider also the possibility that the space-time sheet of the magnetic field
is dark so that the disappearance of photons from the laser beam involves a transformation to a
dark photon followed by a transformation to a dark neutral pion in the magnetic field used. This
would mean that the amplitude for the process would involve an additional dimensionless factor
gγγd

∝ αem ∝ 1/h̄. This would predict n ' 253 and values of this order of magnitude are possible
in the model of living matter [M3]. The smallness of this amplitude could explain the discrepancy.
This option is however not very plausible.

Option III: The third option would be a combination of the first two so that the vertex would
contain the factor gγγd

gπeNeNe = αemgπNNn−1−k. For k = 4 one would have n5 ∼ 253 suggesting
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n = 211 corresponding to the lowest level in the hierarchy of preferred scaling factors n = 2k11 of
h̄ = nh̄0 in living matter. If laser photons are dark photons themselves then gπNN = kα5

s would
give the same prediction. Note that the presence of higher powers of αs in the expansion of gπNN

could affect these conclusions.

4.1.4 Transformation of laser photons to dark cyclotron photons to exotic pions as
the basic mechanism

The cyclotron wave length of electron in a magnetic field of 5 Tesla equals to λc = 2 mm and one
has λc/λ = 211. This intriguing finding suggests that λc corresponds to the wavelength of dark
variant of laser photon at k = 1 level of this hierarchy. One can therefore ask whether the basic
mechanism is the transformation of the laser photon to a dark cyclotron photon with h̄ = 211h̄0

and its mixing with the k = 181 exotic pion.
This would predict that the effect is sensitive to the ratio λc/λ which should be near n = 211,

or to a more general preferred value of n. The preferred values for the scaling factors n of h̄
correspond to n-polygons constructible using ruler and compass. The values of n in question are
given by nF = 2k

∏
i Fsi , where the Fermat primes Fs = 22s

+ 1 appearing in the product are
distinct. The lowest Fermat primes are 3, 5, 17, 257, 216 + 1. In the model of living matter the
especially favored values of h̄ come as powers 2k11.

Can one understand the mass scale of the exotic pion?

The model predicts preferred values for the ratio λc/λ and the experiments correspond to the
lowest value of this ratio for biological dark matter hierarchy. In order to be taken seriously the
model should also tell why just the scaled up variant of QCD with mπ ' 1 meV is involved.

Also this could relate somehow to the properties of the magnetic field. The frequency associated
with the cyclotron photons emitted by electron in the magnetic field is f = eB/me and for B = 5
Tesla the corresponding wave length is λc = 2 mm to be compared with L(181) = .327 mm. As
already noticed, λc = 211λ, where 211λ is the wavelength of the dark variant of laser photon. Hence
it is natural to assume that λc corresponds to an characteristic p-adic length scale for the exotic
QCD in question.

The p-adic length scale L(113) of u and d quarks is related by a factor 8 to gluon length
scale L(107). This would predict that exotic u and d quark correspond to L(187) = 2.6 mm to
be compared with λc = 2 mm. Hence the latter scale might relate to the p-adic length scales
characterizing the Compton lengths of exotic u and d quarks. The prediction would be that the
mixing rate depends on magnetic field changing in a discontinuous manner for critical values of
the magnetic field.

Summary

To sum up, the assumption that laser photons couple to a dark variant of an exotic pion at the
first level of the biological dark matter hierarchy explains the rotation of the polarization direction
if one accepts the proposed proportionality gπNN ∝ α4

s ∝ 1/h̄4 and that the transformation of the
ordinary laser photon to dark photon can be modelled by a coefficient kαem ∝ 1/h̄. The model
explains also why dark variants of other exotic pions are not produced.

4.2 Do nuclear reaction rates depend on environment?

Claus Rolfs and his group have found experimental evidence for the dependence of the rates
of nuclear reactions on the condensed matter environment [86]. For instance, the rates for the
reactions 50V(p,n)50Cr and 176Lu(p,n) are fastest in conductors. The model explaining the findings
has been tested for elements covering a large portion of the periodic table.
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4.2.1 Debye screening of nuclear charge by electrons as an explanation for the find-
ings

The proposed theoretical explanation [86]is that conduction electrons screen the nuclear charge or
equivalently that incoming proton gets additional acceleration in the attractive Coulomb field of
electrons so that the effective collision energy increases so that reaction rates below Coulomb wall
increase since the thickness of the Coulomb barrier is reduced.

The resulting Debye radius

RD = 69

√
T

neffρa
, (18)

where ρa is the density of atoms per cubic meter and T is measured in Kelvins. RD is of order .01
Angstroms for T = 373 K for neff = 1, a = 10−10 m. The theoretical model [84, 85] predicts that
the cross section below Coulomb barrier for X(p, n) collisions is enhanced by the factor

f(E) =
E

E + Ue
exp(

πηUe

E
) . (19)

E is center of mass energy and η so called Sommerfeld parameter and

Ue ≡ UD = 2.09× 10−11(Z(Z + 1))1/2 × (
neffρa

T
)1/2 eV (20)

is the screening energy defined as the Coulomb interaction energy of electron cloud responsible for
Debye screening and projectile nucleus. The idea is that at RD nuclear charge is nearly completely
screened so that the energy of projectile is E + Ue at this radius which means effectively higher
collision energy.

The experimental findings from the study of 52 metals support the expression for the screening
factor across the periodic table.

1. The linear dependence of Ue on Z and T−1/2 dependence on temperature conforms with the
prediction. Also the predicted dependence on energy has been tested [86].

2. The value of the effective number neff of screening electrons deduced from the experimental
data is consistent with neff (Hall) deduced from quantum Hall effect.

The model suggests that also the decay rates of nuclei, say beta and alpha decay rates, could be
affected by electron screening. There is already preliminary evidence for the reduction of beta
decay rate of 22Na β decay rate in Pd [87], metal which is utilized also in cold fusion experiments.
This might have quite far reaching technological implications. For instance, the artificial reduction
of half-lives of the radioactive nuclei could allow an effective treatment of radio-active wastes. An
interesting question is whether screening effect could explain cold fusion [89] and sono-fusion [88]:
I have proposed a different model for cold fusion based on large h̄ in [F8].

4.2.2 Could quantization of Planck constant explain why Debye model works?

The basic objection against the Debye model is that the thermodynamical treatment of electrons
as classical particles below the atomic radius is in conflict with the basic assumptions of atomic
physics. On the other hand, it is not trivial to invent models reproducing the predictions of the
Debye model so that it makes sense to ask whether the quantization of Planck constant predicted
by TGD could explain why Debye model works.
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TGD predicts that Planck constant is quantized in integer multiples: h̄ = nh̄0, where h̄0 is
the minimal value of Planck constant identified tentatively as the ordinary Planck constant. The
preferred values for the scaling factors n of h̄ correspond to n-polygons constructible using ruler and
compass. The values of n in question are given by nF = 2k

∏
i Fsi , where the Fermat primes Fs =

22s

+ 1 appearing in the product are distinct. The lowest Fermat primes are 3, 5, 17, 257, 216 + 1.
In the model of living matter the especially favored values of h̄ come as powers 2k11 [M3, J6].

It is not quite obvious that ordinary nuclear physics and atomic physics should correspond
to the minimum value h̄0 of Planck constant. The predictions for the favored values of n are
not affected if one has h̄(stand) = 2kh̄0, k ≥ 0. The non-perturbative character of strong force
suggests that the Planck constant for nuclear physics is not actually the minimal one [F8]. As a
matter fact, TGD based model for nucleus implies that its ”color magnetic body” has size of order
electron Compton length. Also valence quarks inside hadrons have been proposed to correspond
to non-minimal value of Planck constant since color confinement is definitely a non-perturbative
effect. Since the lowest order classical predictions for the scattering cross sections in perturbative
phase do not depend on the value of the Planck constant one can consider the testing of this issue
is not trivial in the case of nuclear physics where perturbative approach does not really work.

Suppose that one has n = n0 = 2k0 > 1 for nuclei so that their quantum sizes are of order
electron Compton length or perhaps even larger. One could even consider the possibility that
both nuclei and atomic electrons correspond to n = n0, and that conduction electrons can make
a transition to a state with n1 < n0. This transition could actually explain how the electron
conductivity is reduced to a finite value. In this state electrons would have Compton length scaled
down by a factor n0/n1.

For instance, if one has n0 = 211k0 as suggested by the model for quantum biology [M3] and
by the TGD based explanation of the claimed detection of dark matter [83], the Compton length
Le = 2.4× 10−12 m for electron would reduce in the transition k0 → k0− 1 to Le = 2−11Le ' 1.17
fm, which is rather near to the proton Compton length since one has mp/me ' .94× 211. It is not
too difficult to believe that electrons in this state could behave like classical particles with respect
to their interaction with nuclei and atoms so that Debye model would work.

The basic objection against this model is that anyonic atoms should allow more states that
ordinary atoms since very space-time sheet can carry up to n electrons with identical quantum
numbers in conventional sense. This should have been seen.

4.2.3 Electron screening and Trojan horse mechanism

An alternative mechanism is based on Trojan horse mechanism suggested as a basic mechanism of
cold fusion [F8]. The idea is that projectile nucleus enters the region of the target nucleus along
a larger space-time sheet and in this manner avoids the Coulomb wall. The nuclear reaction itself
occurs conventionally. In conductors the space-time sheet of conduction electrons is a natural
candidate for the larger space-time sheet.

At conduction electron space-time sheet there is a constant charged density consisting of neff

electrons in the atomic volume V = 1/na. This creates harmonic oscillator potential in which
incoming proton accelerates towards origin. The interaction energy at radius r is given by

V (r) = αneff
r2

2a3
, (21)

where a is atomic radius.
The proton ends up to this space-time sheet by a thermal kick compensating the harmonic

oscillator energy. This occurs below with a high probability below radius R for which the thermal
energy E = T/2 of electron corresponds to the energy in the harmonic oscillator potential. This
gives the condition
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R =

√
Ta

neffα
a . (22)

This condition is exactly of the same form as the condition given by Debye model for electron
screening but has a completely different physical interpretation.

Since the proton need not travel through the nuclear Coulomb potential, it effectively gains the
energy

Ee = Z
α

R
=

Zα3/2

a

√
neff

Ta
. (23)

which would be otherwise lost in the repulsive nuclear Coulomb potential. Note that the contri-
bution of the thermal energy to Ee is neglected. The dependence on the parameters involved is
exactly the same as in the case of Debye model. For T = 373 K in the 176Lu experiment and
neff (Lu) = 2.2 ± 1.2, and a = a0 = .52 × 10−10 m (Bohr radius of hydrogen as estimate for
atomic radius), one has Ee = 28.0 keV to be compared with Ue = 21± 6 keV of [86] (a = 10−10m
corresponds to 1.24×104 eV and 1 K to 10−4 eV). A slightly larger atomic radius allows to achieve
consistency. The value of h̄ does not play any role in this model since the considerations are purely
classical.

An interesting question is what the model says about the decay rates of nuclei in conductors.
For instance, if the proton from the decaying nucleus can enter directly to the space-time sheet
of the conduction electrons, the Coulomb wall corresponds to the Coulomb interaction energy of
proton with conduction electrons at atomic radius and is equal to αneff/a so that the decay rate
should be enhanced.

5 Appendix

5.1 About inclusions of hyper-finite factors of type II1

Many names have been assigned to inclusions: Jones, Wenzl, Ocneacnu, Pimsner-Popa, Wasserman
[71]. It would seem to me that the notion Jones inclusion includes them all so that various
names would correspond to different concrete realizations of the inclusions conjugate under outer
automorphisms.

1. According to [71] for inclusions with M : N ≤ 4 (with A
(1)
1 excluded) there exists a countable

infinity of sub-factors with are pairwise non inner conjugate but conjugate to N .

2. Also for any finite group G and its outer action there exists uncountably many sub-factors
which are pairwise non inner conjugate but conjugate to the fixed point algebra of G [71].
For any amenable group G the the inclusion is also unique apart from outer automorphism
[70].

Thus it seems that not only Jones inclusions but also more general inclusions are unique apart
from outer automorphism.

Any *-endomorphism σ, which is unit preserving, faithful, and weakly continuous, defines a
sub-factor of type II1 factor [71]. The construction of Jones leads to a atandard inclusion sequence
N ⊂ M ⊂ M1 ⊂ .... This sequence means addition of projectors ei, i < 0, having visualization
as an addition of braid strand in braid picture. This hierarchy exists for all factors of type II.
At the limit M∞ = ∪iMi the braid sequence extends from −∞ to ∞. Inclusion hierarchy can
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be understood as a hierarchy of Connes tensor powers M⊗N M.... ⊗N M. Also the ordinary
tensor powers of hyper-finite factors of type II1 (HFF) as well as their tensor products with finite-
dimensional matrix algebras are isomorphic to the original HFF so that these objects share the
magic of fractals.

Under certain assumptions the hierarchy can be continued also in opposite direction. For a
finite index an infinite inclusion hierarchy of factors results with the same value of index. σ is
said to be basic if it can be extended to *-endomorphisms from M1 to M. This means that
the hierarchy of inclusions can be continued in the opposite direction: this means elimination of
strands in the braid picture. For finite factors (as opposed to hyper-finite ones) there are no basic
*-endomorphisms of M having fixed point algebra of non-abelian G as a sub-factor [71].

1. Jones inclusions

For hyper-finite factors of type II1 Jones inclusions allow basic *-endomorphism. They exist
for all values of M : N = r with r ∈ {4cos2(π/n)|n ≥ 3} ∩ [4,∞) [71]. They are defined for an
algebra defined by projectors ei, i ≥ 1. All but nearest neighbor projectors commute. λ = 1/r
appears in the relations for the generators of the algebra given by eiejei = λei, |i−j| = 1. N ⊂M
is identified as the double commutator of algebra generated by ei, i ≥ 2.

This means that principal graph and its dual are equivalent and the braid defined by projectors
can be continued not only to −∞ but that also the dropping of arbitrary number of strands is
possible [71]. It would seem that ADE property of the principal graph meaning single root length
codes for the duality in the case of r ≤ 4 inclusions.

Irreducibility holds true for r < 4 in the sense that the intersection of Q′∩P = P ′∩P = C. For
r ≥ 4 one has dim(Q′∩P ) = 2. The operators commuting with Q contain besides identify operator
of Q also the identify operator of P . Q would contain a single finite-dimensional matrix factor less
than P in this case. Basic *-endomorphisms with σ(P ) = Q is σ(ei) = ei+1. The difference between
genuine symmetries of quantum TGD and symmetries which can be mimicked by TGD could relate
to the irreducibility for r < 4 and raise these inclusions in a unique position. This difference could
partially justify the hypothesis that only the groups Ga×Gb ⊂ SU(2)×SU(2) ⊂ SL(2, C)×SU(3)
define orbifold coverings of H± = M4

± × CP2 → H±/Ga ×Gb.

2. Wasserman’s inclusion

Wasserman’s construction of r = 4 factors clarifies the role of the subgroup of G ⊂ SU(2) for
these inclusions. Also now r = 4 inclusion is characterized by a discrete subgroup G ⊂ SU(2) and
is given by (1⊗M)G ⊂ (M2(C)×M)G. According to [71] Jones inclusions are irreducible also for
r = 4. The definition of Wasserman inclusion for r = 4 seems however to imply that the identity
matrices of both MG and (M(2, C) ⊗M)G commute with MG so that the inclusion should be
reducible for r = 4.

Note that G leaves both the elements of N and M invariant whereas SU(2) leaves the elements
of N invariant. M(2, C) is effectively replaced with the orbifold M(2, C)/G, with G acting as
automoprhisms. The space of these orbits has complex dimension d = 4 for finite G.

For r < 4 inclusion is defined as MG ⊂ M . The representation of G as outer automorphism
must change step by step in the inclusion sequence ... ⊂ N ⊂M ⊂ ... since otherwise G would act
trivially as one proceeds in the inclusion sequence. This is true since each step brings in additional
finite-dimensional tensor factor in which G acts as automorphisms so that although M can be
invariant under GM it is not invariant under GN .

These two inclusions might accompany each other in TGD based physics. One could consider
r < 4 inclusion N = MG ⊂M with G acting non-trivially in M/N quantum Clifford algebra. N
would decompose by r = 4 inclusion to N1 ⊂ N with SU(2) taking the role of G. N/N1 quantum
Clifford algebra would transform non-trivially under SU(2) but would be G singlet.
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In TGD framework the G-invariance for SU(2) representations means a reduction of S2 to the
orbifold S2/G. The coverings H± → H±/Ga × Gb should relate to these double inclusions and
SU(2) inclusion could mean Kac-Moody type gauge symmetry for N . Note that the presence of
the factor containing only unit matrix should relate directly to the generator d in the generator set
of affine algebra in the McKay construction. The physical interpretation of the fact that almost
all ADE type extended diagrams (D(1)

n must have n ≥ 4) are allowed for r = 4 inclusions whereas
D2n+1 and E6 are not allowed for r < 4, remains open.

5.2 Generalization from SU(2) to arbitrary compact group

The inclusions with index M : N < 4 have one-dimensional relative commutant N ′∪M. The most
obvious conjecture that M : N ≥ 4 corresponds to a non-trivial relative commutant is wrong. The
index for Jones inclusion is identifiable as the square of quantum dimension of the fundamental
representation of SU(2). This identification generalizes to an arbitrary representation of arbitrary
compact Lie group.

In his thesis Wenzl [72] studied the representations of Hecke algebras Hn(q) of type An obtained
from the defining relations of symmetric group by the replacement e2

i = (q − 1)ei + q. Hn is
isomorphic to complex group algebra of Sn if q is not a root of unity and for q = 1 the irreducible
representations of Hn(q) reduce trivially to Young’s representations of symmetric groups. For
primitive roots of unity q = exp(i2π/l), l = 4, 5..., the representations of Hn(∞) give rise to
inclusions for which index corresponds to a quantum dimension of any irreducible representation
of SU(k), k ≥ 2. For SU(2) also the value l = 3 is allowed for spin 1/2 representation.

The inclusions are obtained by dropping the first m generators ek from H∞(q) and taking
double commutant of both H∞ and the resulting algebra. The relative commutant corresponds
to Hm(q). By reducing by the minimal projection to relative commutant one obtains an inclusion
with a trivial relative commutant. These inclusions are analogous to a discrete states superposed
in continuum. Thus the results of Jones generalize from the fundamental representation of SU(2)
to all representations of all groups SU(k), and in fact to those of general compact groups as it
turns out.

The generalization of the formula for index to square of quantum dimension of an irreducible
representation of SU(k) reads as

M : N =
∏

1≤r<s≤k

sin2 ((λr − λs + s− r)π/l)
sin2 ((s− r)n/l)

. (24)

Here λr is the number of boxes in the rth row of the Yang diagram with n boxes characterizing
the representations and the condition 1 ≤ k ≤ l − 1 holds true. Only Young diagrams satisfying
the condition l − k = λ1 − λrmax are allowed.

The result would allow to restrict the generalization of the imbedding space in such a man-
ner that only cyclic group Zn appears in the covering of M4 → M4/Ga or CP2 → CP2/Gb

factor. Be as it may, it seems that quantum representations of any compact Lie group can be
realized using the generalization of the imbedding space. In the case of SU(2) the interpretation of
higher-dimensional quantum representations in terms of Connes tensor products of 2-dimensional
fundamental representations is highly suggestive.

The groups SO(3, 1) × SU(3) and SL(2, C) × U(2)ew have a distinguished position both in
physics and quantum TGD and the vision about physics as a generalized number theory implies
them. Also the general pattern for inclusions selects these groups, and one can say that the
condition that all possible statistics are realized is guaranteed by the choice M4 × CP2.

1. n > 2 for the quantum counterparts of the fundamental representation of SU(2) means that
braid statistics for Jones inclusions cannot give the usual fermionic statistics. That Fermi
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statistics cannot ”emerge” conforms with the role of infinite-D Clifford algebra as a canonical
representation of HFF of type II1. SO(3, 1) as isometries of H gives Z2 statistics via the
action on spinors of M4 and U(2) holonomies for CP2 realize Z2 statistics in CP2 degrees of
freedom.

2. n > 3 for more general inclusions in turn excludes Z3 statistics as braid statistics in the
general case. SU(3) as isometries induces a non-trivial Z3 action on quark spinors but trivial
action at the imbedding space level so that Z3 statistics would be in question.
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